

CORFU 2022 9th International Conference on Sustainable Solid Waste Management 15-18 June 2022, Corfu, Greece

Alkaline pretreatment of spent coffee grounds for microbial oil production using the oleaginous yeast strain *Lipomyces starkeyi*

Eleni Stylianou, N. Giannakis, E. Titiri, K. Filippi, C. Pateraki, A. Koutinas

Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece

Email: <u>elea.stylianou@outlook.com</u>

Objectives

- Valorisation of spent coffee grounds (SCGs) from catering services
- Biorefinery development for the production of value-added products
- Experimental design for the alkaline pretreatment of residual SCGs
- Valorisation of SCGs hydrolysate via bioprocess development for microbial oil production

Spent coffee grounds (SCGs)

- In 2019, over 1.8 million t of coffee were processed in the European Union
- European coffee consumption in 2018/2019 generated an estimated 6.5 million t of SCGs
- For every kg of coffee beverage, 2 kg of solid waste are produced as SCGs
- SCGs management is an important issue in the EU
- Nowadays, the majority of SCGs is disposed via landfilling

More than 330,000 t of SCGs are generated from coffee catering services in the EU

Biorefinery development of SCGs

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ AGRICULTURAL UNIVERSITY OF ATHENS

- Carbohydrates
- Lipids
- Phenolic compounds
- Protein
- Minerals

Conventional and

prospective

applications

- Feed additive
- Fertilizer
- Cosmetics industry
- Pharmaceutical industry
- Biofuel production
- Microbial fermentation

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ AGRICULTURAL UNIVERSITY OF ATHEN

Compositional analysis of SCGs

Composition (% dry basis)	This study	Literature
Ash	1.8	0.4 - 2.2
Protein	14.8	6.7 - 13.7
Oil	12.2	10.0 - 15.0
Phenolics	0.92	
Glucan	ΤΟ.6	8.6-15.3
Hemicellulose	28.9	30.0 - 39.0
Arabinan	1.9	1.7
Mannan	17.2	21.2
Galactan	8.9	13.8
Xylan	1.0	
Lignin	28.1	23.9 - 33.6

Stylianou Eleni, 9th International Conference On Sustainable Solid Waste Management CORFU 2022 | Greece | June 15-17, 2022

Recovery of value-added components

- Hexane resulted to oil recovery of 97.8%
- Ethyl acetate, as an alternative green solvent, led to oil recovery of 96.9%

Recovery of value-added components

Extraction of phenolic compounds

Extraction conditions: Extraction solvent: 70% EtOH Ultrasound 20 min, 3 times Different solid to liquid ratio: 1:10 (w/v) 1:20 (w/v)

Stylianou Eleni, 9th International Conference On Sustainable Solid Waste Management CORFU 2022 | Greece | June 15-17, 2022

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ AGRICULTURAL UNIVERSITY OF ATHEN

Alkaline pretreatment of residual SCGs

Alkaline treatment and subsequent enzymatic hydrolysis of residual SCGs

Brew2Bio Stylianou Eleni, 9th International Conference On Sustainable Solid Waste Management CORFU 2022 | Greece | June 15-17, 2022

- Carlie

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ AGRICULTURAL UNIVERSITY OF ATHENS

Validation of experimental design

Optimisation approach \Box **Lignin removal (%)**

- Carlier

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ AGRICULTURAL UNIVERSITY OF ATHENS

Fermentation with *Lipomyces starkeyi* for microbial oil production

Brew2Bio Stylianou Eleni, 9th International Conference On Sustainable Solid Waste Management CORFU 2022 | Greece | June 15-17, 2022

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ AGRICULTURAL UNIVERSITY OF ATHENS

Satty acid methyImage: set of the set of th	Palmitic acid C16:0 Palmitoleic C16:1 Stearic acid C18:0	0%4% 52% 52% 6%				
Fermentation time (h)	Palmitic acid C16:0	Palmitoleic C16:1	Stearic acid C18:0	Oleic acid C18:1	Linoleic acid C18:2	Others
25	36.4	3.1	9.9	43.8	0.5	6.4
94	33.5	3.5	6.0	52.4	0.2	4.4
218	34.3	0	6.8	56.1	1.6	1.2
	` <u>`</u>			×		

Concluding remarks

- Development of a novel biorefinery is a promising way to ensure sustainable SCGs, with the recovery of value-added products
- Ethyl acetate could efficiently replace hexane as an alternative green solvent for the extraction of coffee oil
- The lowest removal of all components was obtained when the pretreatment was carried out at 105°C without NaOH addition
- Optimum conditions for delignification of residual SCGs obtained were 0.06% (w/v) NaOH at 99.5°C leading to lignin removal of 36%
- Fermentation of SCGs hydrolysate with *Lipomyces starkeyi* resulted in 87.5 g/L of DCW with 49% oil content

CORFU 2022 9th International Conference on Sustainable Solid Waste Management 15-18 June 2022, Corfu, Greece

Thank you for your attention!

This work was supported by the project "Production of sustainable biofuels and value-added products from municipal organic solid wastes of catering services - Brew2Bio" (MIS 5071807) which is implemented under the Action "Research - Create - Innovate", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

