

CORFU2022
15-18 JUNE
corfu2022.uest.gr

9th International Conference
on
Sustainable Solid Waste Management

National Technical University of Athens
GLOBAL WIERT COUNCIL
MINISTRY OF CULTURE & GREEK ISLANDS

HELENIK REPUBLIC
DEPARTMENT OF DEVELOPMENT AND INVESTMENTS
SPECIAL SECRETARIAT FOR
ERDF & THE GREEK ISLES
MANAGING AUTHORITY OF EPAnEK

EPAnEK 2014-2020
OPERATIONAL PROGRAMME
COMPETITIVENESS
ENTREPRENEURSHIP
INNOVATION
ΕΣΠΑ
2014-2020
επενδύσεις - σύρραγος - ανάπτυξη
Partnership Agreement
2014 - 2020

Co-financed by Greece and the European Union

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
AGRICULTURAL UNIVERSITY OF ATHENS

Valorisation of sugar beet pulp for the production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

| *Olga Vittou, Maria-Varvara Sarafidou, Dimitris Ladakis, Chrysanthi Pateraki, Apostolis Koutinas*

| *Department of Food Science and Human Nutrition,
Agricultural University of Athens, Iera Odos 75,
Athens 11855, Greece*

Beet2Bioref

- ❖ Development of Sugar Beet Pulp biorefinery
- ❖ Crude enzymes production via solid state fermentation (SSF)
- ❖ Sugar Beet Pulp hydrolysate as feedstock for PHB production
- ❖ PHBV production with different 3HV monomer content

| Poly(3-hydroxybutyrate) (PHB)

The transition to the circular bio-economy era requires technological breakthroughs in sustainable biorefinery development using **crude renewable resources, microbial bioconversions and recycling of biopolymers**

- Member of polyhydroxyalkanoates (PHAs)
- Accumulated in intracellular granules by Gram+ and – microorganisms
- It is produced **under excess of carbon source and limited nutrient conditions (N, P, O)**
- Serve as a carbon and energy storage

+

- Similar properties with conventional polymers such as polypropylene and polyethylene.
- It is highly biodegradable, non-toxic, and biocompatible.

-

- high degree of crystallinity
- rigidity
- low elongation to break

Create difficulties in material processability

PHB applications

| Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)

- Better physical properties
- its performance can vary when this polymer contains different proportions of the HV monomer
- Impact resistance
- Toughness
- Flexibility
- Low melting point

Due to its superior characteristics, PHBV is more attractive for both biomedical and food packaging applications

Limited use High production cost

- ! The carbon source accounts for 28-50% of the total production cost

PHBV Synthesis

- ❑ 3-HV and 3-HB, the monomer units of PHBV are synthesized simultaneously in bacterial cytoplasm via two parallel pathways.
- ❑ Levulinic acid acts as a direct precursor that triggers the formation of 3-HV, in addition to 3-HB.

| Sugar Beet

- ✓ One of the most important agricultural crop
- ✓ Annual production: 253 million t of beets
- ✓ One of the highest volume vegetable wastes
- ✓ SBP is the main by-product of sugar industry
- ✓ 10.35 million t/y of SBP was produced in Europe
- ✓ 1 t of sugar beets yields to 50 kg dehydrated SBP

Germany France Other

SBP Biorefinery

Composition of Sugar beet pulp pellets (% dry basis)

Free sugars	10.9 ± 1.7	
Sucrose	9.0 ± 0.7	1.0 – 8.0
Glucose	1.5 ± 0.8	
Fructose	0.4 ± 0.3	
Ash content	3.7 ± 0.6	2.4 – 4.0
Protein Content (N x 6.25)	9.1 ± 0.1	5.9 - 11.4
Pectin (uronic acid)	19.1 ± 0.9	13.5 - 22.8
Lipid Content	0.9	1.5
Glucan	27.9 ± 4.9	14.0 - 25.5 ¹
Xylan	3.1 ± 0.2	
Galactan	5.5 ± 0.2	25.0 -36.6 ²
Mannan	4.3 ± 0.9	
Arabinan	12.0 ± 4.1	
Lignin	2.3 ± 0.3	1.2 - 2.0
Phenolics (mg GAE)	205.7 ± 22.2	
REFERENCE	This work	Literature

¹cellulose, ²hemicellulose

| Production of crude enzymes during solid state fermentations by *Aspergillus awamori* cultivated on a mixture of sugar beet pulp (SBP) & sunflower meal (2:1)

EXPERIMENTAL DESIGN

- *Aspergillus awamori*
- SBP free of sugars and pectin & sunflower meal
- Moisture content: 60% and 65%

* U = the amount of enzyme that releases 1 mg of substrate per minute

| Bioreactors Set up

<i>Paraburkholderia sacchari</i> DMSZ 17165	
Carbon Source	SBP hydrolysate, Commercial mix sugars 40 g/L Levulinic Acid
Inorganic Phosphorus	800(mg/L)
Working Volume	1 L
pH	6.8 (28% NH_4OH και 2 M HCl)
Temparature	30°C
Agitation	1200 rpm
Ventilation	2.5 vvm
Minerals (g/L)	$(\text{NH}_4)_2\text{SO}_4$, 4.0 g; KH_2PO_4 , 3.0 g; citric acid, 1.7 g; EDTA, 40 mg; trace elements solution, 10 mL; $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 1.2 g. Trace element (g/L): $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$, 10 g; $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$, 2.25 g; $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$, 1 g; $\text{MnSO}_4 \cdot 4\text{H}_2\text{O}$, 0.5 g; $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$, 2 g; $\text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O}$, 0.23 g; $(\text{NH}_4)_6\text{Mo}_7\text{O}_24$, 0.1 g; 35% HC1 10 mL

Fermentation with SBP hydrolysate for PHB production

Time (h)	CDW (g/L)	PHB (%)	PHB g/L	Yield (g PHB / g consumed sugars)	Productivity (g/L/h)
38.5	118	41.1	48.54	0.28	1.26

- CDW: cell dry weight
- RCW: residual cell weight
- IN: Inorganic nitrogen
- IP: Inorganic phosphorus

Case Study 1

- Addition of 8 g Levulinic Acid
- After 24 h of fermentation
- 1 g / h

Case Study 2

- Addition of 13 g Levulinic Acid
- After 24 h of fermentation
- 1 g / 30 min

Case Study 3

- Addition of 22 g Levulinic Acid
- After 24 h of fermentation
- 3 g / h

Case Study 4

- Addition of 28 g Levulinic Acid
- After 24 h of fermentation
- 2 g / 30 min

Fermentations with mixed sugars simulating hydrolysate for PHBV production

PHBV	Yield		Productivity	Levulinic acid consumed (g)	3HV/PHBV
58.7 (g/L)	CDW (g/L)	(g PHBV/g consumed carbon*)	(g/L/h)		
58.7 (g/L)	111	0.29	1.72	13	15%
49.8	8.86				

*Including sugars and Levulinic Acid

Fermentations with mixed sugars simulating hydrolysate for PHBV production

10 g Levulinic Acid

22 g Levulinic Acid

28 g Levulinic Acid

Fermentation Results

- ✓ Increasing levulinic acid consumption leads to increased 3HV accumulation
- ✓ Based on the experimental results presented, the preferred 3HV content can be controlled during fermentation

Conclusions

- ❖ Crude enzymes were produced via solid state fermentation with *Aspergillus awamori*
- ❖ SBP hydrolysate was efficiently valorized as carbon source for PHB with of total dry weight of 118 g/L and PHB accumulation of 42% (w/w)
- ❖ The total amount of LA consumed demonstrate significant role in final 3HV accumulation

Thank you for your attention !

This work was supported by the project "Valorisation of sugar beet cultivation residues and by-products of sugar manufacturing process for the production of bio-based and biocomposite biodegradable packaging materials – Beet2Bioref" (MIS 5069983) which is implemented under the Action "Research - Create - Innovate", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

| *Olga Vittou, Maria-Varvara Sarafidou, Dimitris Ladakis, Chrysanthi Pateraki, Apostolis Koutinas*

| *Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece*