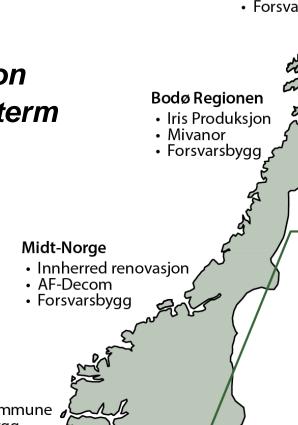


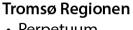
The occurrence and removal of the fluoro alkyl (PFAS) substances in (leachate) samples from a Norwegian waste handling facility and its surroundings

K. Haarstad*, J. Barlindhaug**
*Nibio, Ås. **Perpeetum, Balsfjord.

"The main goal for Senter for excellence SFIfinancing is to contribute to improved innovation and value in Norwegian business through long term research"

- 24 partners, 8 in research
- Total budget: 220 mill. NOK
- 96 mill. NOK from the Research Council
- Duration: 8 years





Vest-Norge

- Bergen kommune
- Forsvarsbygg
- AF-Decom
- Lindum

Sør-Vest Norge

- Rogaland fylkeskommune,
- Forsvarsbygg
- NOAH

- Perpetuum
- Forsvarsbygg

Østlandet og Oslo Regionen

- NOAH
- Viken fylkeskommune
- Lindum
- AF Decom
- Ås kommune
- Skanska
- Forsvarsbygg
- Lillestrøm kommune
- Oslo kommune
- Stena Recycling

Nedre Glomma Regionen

- Borg Havn
- Kronos Titan
- Scandienergy
- Frevar
- Borregaard
- NCCE
- Fredrikstad kommune

Sør-Øst Norge

- Eyde cluster
- Forsvarsbygg
- Skien kommune

Priority pollutants of concern:

Pesticides
Phenols (PCP)
PFAS

Table 4. Environmental quality standards (EQS) for PFOA and PFOS (Miljødirektoratet, 2016).

Matrix	Substance	AA-EQS (water) QS _{sed} (E)QS _{biota}	MAC-EQS (water) QS _{sed, acute}
Fresh water	PFOA	9100 ng/L	
riesii watei	PFOS	0.65 ng/L	36000 ng/L
Conventor	PFOA	9100 ng/L	
Sea water	PFOS	0.13 ng/L	7200 ng/L
Sediment, fresh water	PFOA	713 μg/kg	
Sediment, fresh water	PFOS	2.3 μg/kg	360 μg/kg
Codiment con water	PFOA	71 μg/kg	
Sediment, sea water	PFOS	0.23 μg/kg	72 μg/kg
Diete	PFOA	91.3 μg/kg ww	
Biota	PFOS	9.1 μg/kg ww	

AA-EQS; chronic effects after long term exposure. MAC-EQS, acute toxic effects from short exposure

A	В	C	D	E	F	G	Н	I	J	K	L	M
Pesticid	Kow	Koc	T _{1/2}	Vannløslighet	рКа	MAC-QS	Omsatt	MFI	EQS-Ger	AMF	creation wate	Eu ferskv.
	Log	Log	dissipation o	μ g/L (pH 7 or	-	μ g/l	「onn/år (00-04	μ g/l	μ g/l	μ g/l	μ g/l	μ g/l
aclonifen	4,37	3,93	50	1400		0,12	2139	0,25		0,69		
alachlor	0,46	2,23		242000,00		0,70		20**	0,30		3	0,30
atrazine	2,50	1,98	45	33000	1,74	2,00		0,40	0,14	4,30		0,60
bifenox	4,48			350		0,04						
chlorfenvinphos	3,85	1,72	33	145000		0,30	1697	0,00025		0,00250	10	0,10
chlorpyriphos				2000		0,10						0,03
cybutryne						0,02						
cypermetrin		1,91	1103,00	4,00		6,00E-04						
DDT												
dichlorvos	1,40			low		7,00E-04						
dicofol	5,02	3,4		1200								
diuron	0,44			42000		1,80			0,20			0,20
endosulfan	3,13	4,09	150	330		0,01		0,050		0,260	40	0,005
endosulfan-alfa									0,0050			
endosulfan-beta									0,0050			
endosulfan-sulfat												
endosulfan-diol												
isoproturon	2,87	0,85	28	65000		1,00	4223	0,32 (9**)	0,58	2,10		0,30
quinoxyfen	4,66			100000	3,56	2,70						
simazin	2,10	2,10	89	6200	1,60	4,00		0,42 (2**)	0,18	4,20		1,00
terbutryn						0,34			0,0059			
triflualin								20**	0,12			0,03

Search

EMERGING INFECTIOUS DISEASES°

EID Journal > Volume 15 > Number 9—September 2009 > Main Article

Volume 15, Number 9—September 2009

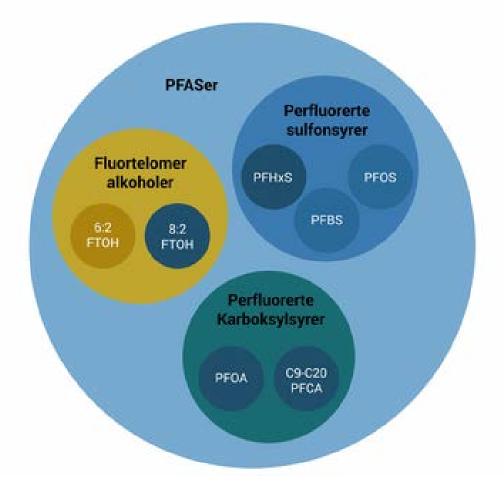
Historical Review

Program to Eradicate Malaria in Sardinia, 1946–1950

Eugenia Tognotti⊠

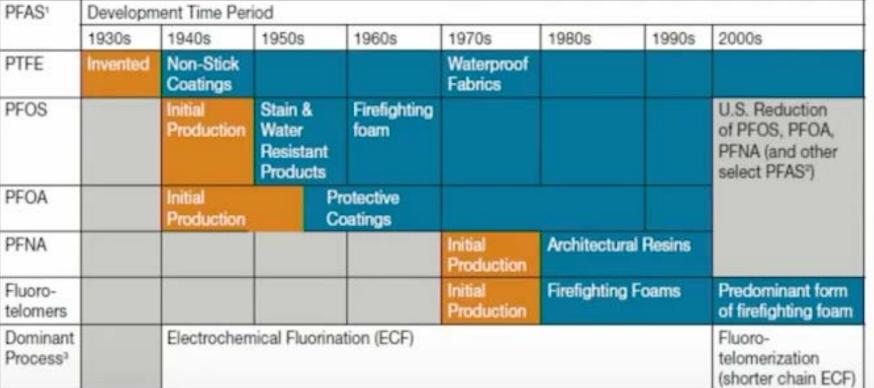
Author affiliation: University of Sassari, Sardinia, Italy

Cite This Article


Abstract

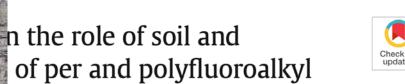
During 1946–1950, the Rockefeller Foundation conducted a large-scale experiment in Sardinia to test the feasibility of indigenous vector species eradication. The interruption of malaria transmission did not require vector eradication, but with a goal of developing a new strategy to fight malaria, the choice was made to wage a rapid attack with a powerful new chemical. Costing millions of dollars, 267 metric tons of DDT were spread over the island. Although malaria was eliminated, the main objective, complete eradication of the vector, was not achieved. Despite its being considered almost eradicated in the mid-1940s, malaria 60 years later is still a major public health problem throughout the world, and its eradication is back on the global health agenda.

11000 µg/m2
No changes in mortality
No changes in sex distribution in infants
No «changes» in prevalence of carinogenic diseases

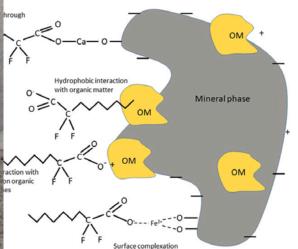


Long chain PFAS bio magnificate and can be toxic (PFOS, PFOA..). Now production focus on short chain, that however are persistent and mobile.

Animal studies: liver damage, fetus damage, cancerogenic. Can influence the immune defence and effect of vaccines.

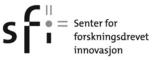


al Environment


/ier.com/locate/scitotenv

og

АСТ



lisse

og)20

PAPER View Article Online
View Journal

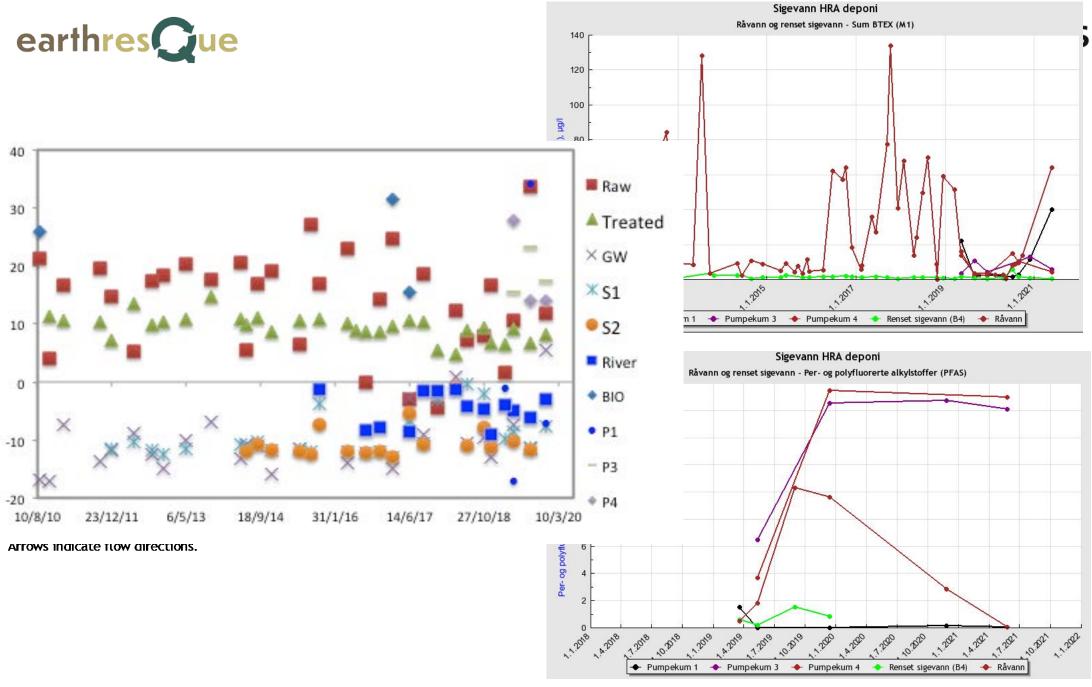

Leachate emissions of short- and long-chain perand polyfluoralkyl substances (PFASs) from various Norwegian landfills†

Table 2 Comparison of short- (PFBS, PFBA, PFPeA and PFHxA) and long-chain (PFHxS, PFHpS, PFOS, PFDS, PFHpA, HPFHpA, PFOA, PFNA, PFDA, PFUnDA, PF-3,7-DMOA, PFDoA, PFTrA, PFTA and PFHxDA) PFAS concentrations (ng L^{-1}) in landfill leachate from selected studies. Values < LOQ are excluded from the calculations

Area, year (number of landfills/raw, diluted, mixed)	_	\sum Long-chain PFASs mean \pm SD (min-max)	Short : long-chain ratio	n PFASs	\sum_{n} PFASs	Reference
Norway, 2017–2018 (10, mixed)	980 ± 1800 (68-6800)	530 ± 730 (140–2900)	1.8 ± 0.94 (0.28-3.1)	28	1700 ± 2900 (320-11 000)	This study
Norway, 2006 (2, raw)	757	4784 ^a	0.16	16	6123	Eggen et al., 2010 ¹⁹
Canada, 2009 (1, raw)	2812 ± 1109 (1424–5150)	2719 ± 2160 $(1021-7738)^b$	1.0	24	$11\ 000 \pm 10\ 000$ (3800–3600)	Benskin <i>et al.</i> , 2012 ¹³
Sweden, 2015 (10, unknown)	171 ± 137 (<loq-508)< td=""><td>123 ± 78 (<loq-269)<sup>c</loq-269)<sup></td><td>1.4</td><td>26</td><td>487 (0.30–1300)</td><td>Gobelius <i>et al.</i>, 2018²³</td></loq-508)<>	123 ± 78 (<loq-269)<sup>c</loq-269)<sup>	1.4	26	487 (0.30–1300)	Gobelius <i>et al.</i> , 2018 ²³
Spain, 2015 (4, raw)	576 ± 317 (125–852)	506 ± 113 $(413-663)^d$	1.1	16	1082 (639–1379)	Fuertes <i>et al.</i> , 2017 ²⁴

^a With the exclusion of PFHpS, HPFHpA, PF-3,7-DMOA, PFTA and PFHxDA; note this was measured using non-target analysis. ^b With the exclusion of PFHpS, HPFHpA, PFDA, PFDA, PFDA, PFTA and PFHxDA. ^c With the exclusion of PFHpS, HPFHpA, PFOA, PFDA and PF-3,7-DMOA. ^d With the exclusion of HPFHpA, PF-3,7-DMOA and PFHxDA.

= Senter for

forskningsdrevet innovasjon

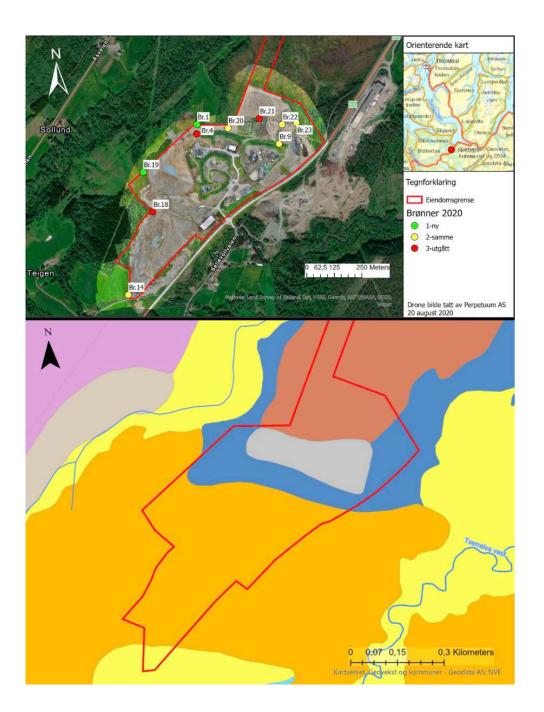
	Raw	Bio	L1	L2	Treated	GW	Source1	Source2	River
Ca	239	253	175	172	67	22	56	65	7,5
Fe	25	47	13	13	32	5,95	0,11	0,03	0,05
Tot-N	1236	947	757	911	69	0,66	0,2	1,8	0,62
Oil	7311	10713	2161	3767	17	89	21	54	-
SO ₄	52	20	121	116	2,5	6,8	19	18	0,3
Na	512	369	694	716	62	3,1	3	3,6	1,4
HCO ₃	4340	2296	4723	5135	632	78	176	200	18
El.cond	1142	594	902	952	124	14	33	37	5,6
pН	7,6	6	7,8	7,9	7,2	7,3	8	8,2	7,4

Raw =untreated mix of all leachates, Bio = from biogas and composting and some surface runoff, L1 and L2 = leachate from landfill, Treated = collected in downstream well, GW =upstream well, Sources = gw to river. All in mg/l except Oil = C10-40 in μ g/l, and EC in mS/m.

Table 4. Physiochemical water types*.

	Raw	P1	Р3	P4	Treated	GW	S1	S2
	Na-	Na-	Na-	Na-	Ca-	Ca-	Ca-	Ca-
Type	HCO ₃							
Saturation	Super	Super	Super	Super	Super	Under	Super	Super
CO ₂ ppm	734	7256	586	573	384	3	18	0.1

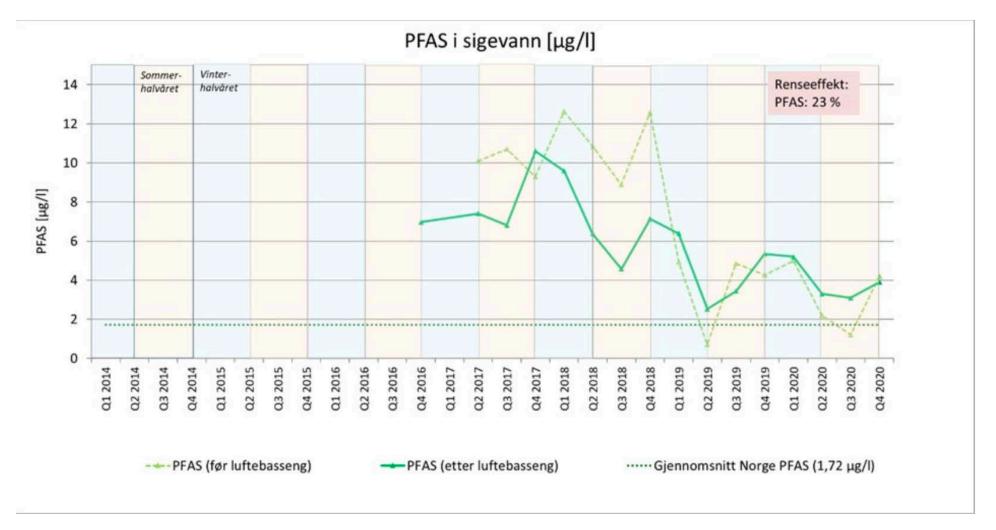
^{*}Type = dominating ions. Saturation relative to Ca. Equilibrium CO₂ partial pressure.


Table 4. PFAS in leachate (μg/l)

Date	BIO	L1	L2	Treated	Raw
21.03.2019	1,54			0,58	0,49
13.05.2019		6,48	3,7	0,21	1,81
02.09.2019		0		1,51	10,3
13.12.2019	0,013	16,5	17,5	0,846	9,6
26.11.2020	0,124	16,7			2,84
26.05.2021	0,0473	16,1	17		0,0319
26.08.2021	0,012	13	11,3		4,186
Average	0,049	11,5	14,2	0,7865	4,1797

*Bio = leachate from composting and digestion, Leachate 1 & 2 = landfill leachate, possible from different parts of the landfill. Treated=pumped from downstream groundwater, Raw = mix from first 3.

Stormoen, next to Tromsø 70 north



Senter for forskningsdrevet innovasjon

XXXX

SUMMARY:

PFAS ON OF THE LOWEST EQS
WHAT DOES THAT MEAN FOR HUMAN AND ENVIRONMENT?
SHOULD WE SPEND LOTS OF MONEY ON MONITORING?

PHD ON PFAS REMOVAL FROM LEACHATE

earthres Table 4. PFAS in leachate (\alpha g/l)

Date	BIO	L1	L2	Treated	Raw
21.03.2019	1,54			0,58	0,49
13.05.2019		6,48	3,7	0,21	1,81
02.09.2019		0		1,51	10,3
13.12.2019	0,013	16,5	17,5	0,846	9,6
26.11.2020	0,124	16,7			2,84
26.05.2021	0,0473	16,1	17		0,0319
26.08.2021	0,012	13	11,3		4,186
Average	0,049	11,5	14,2	0,7865	4,1797

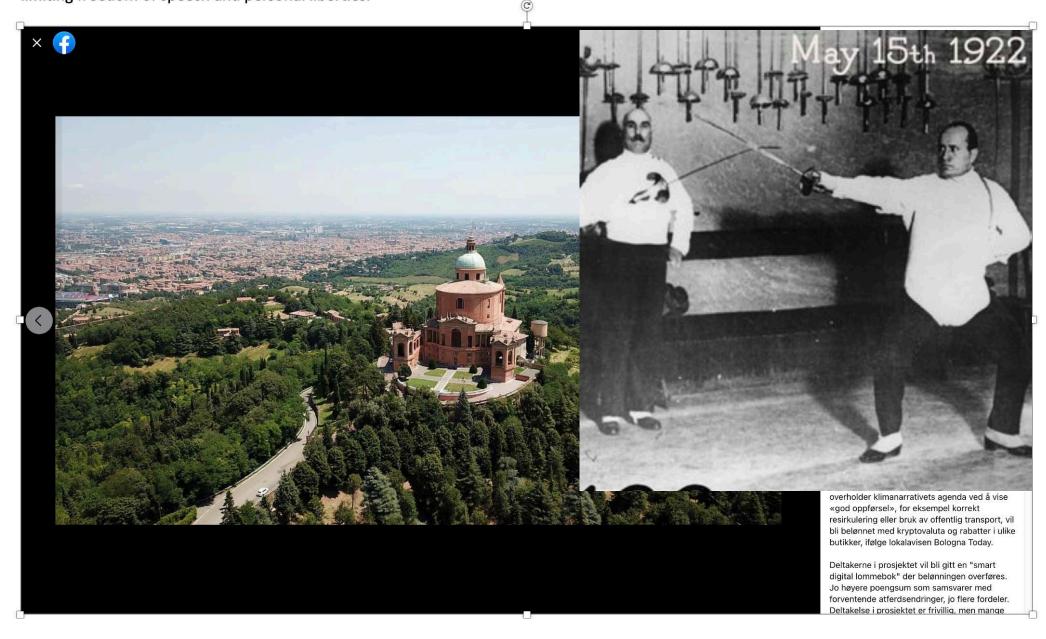
^{*}Bio = leachate from composting and digestion, Leachate 1 & 2 = landfill leachate, possible from different parts of the landfill. Treated=pumped from downstream groundwater, Raw = mix from first 3.

Date	BIO	L1	L2	Treated	Raw
21.03.2019	0,112			0,0362	0,086
13.05.2019	0,005	0,23	0,128	0,005	0,0589
02.09.2019	0	0		0,0389	0,129
13.12.2019	0,005	0,15	0,19	0,0127	0,104
09.07.2020	0,005	0	0,157		
25.08.2020	0,005	0,174	0,124	0,0225	
26.11.2020	0,05	0,157			0,05
26.05.2021	0,0212	0,18	0,176		0,0187
26.08.2021	<0,01	0,189	0,211		<,1
Average	0,013	0,135	0,211	0,023	0,072

^{*}Bio = leachate from composting and digestion, Leachate 1 & 2 = landfill leachate, possible from different parts of the landfill. Treated=pumped from downstream groundwater, Raw = mix from first 3.

Limit = $0.00065 \mu g/I$

earthres PFQA (caroboxylic) in leachate (µg/l)


Date	BIO	L1	L2	Treated	Raw
21.03.2019	0,452			0,211	0,121
13.05.2019	0,005	1,79	1,19	0,079	0,482
02.09.2019	0	0		0,196	0,155
13.12.2019	0,005	2,04	2,23	0,0992	1,16
09.07.2020	0,005	0	1,92		
26.05.2021	0,026	2,3	2,45		0,013
26.08.2021	0,012	1,87	1,56		0,66
Average	0,009	1,33	2,01	0,146	0,3365

..and sediments (µg/kg DM)

Date	PFAS	PFOA	PFOS
21.03.2019	44100	16000	7100
13.05.2019	131	21	24
02.09.2019	30	6	12
Average	14754	5343	2379
Limit		713	2,3

Bologna first in the EU to introduce <u>Social</u> credits for «moral behavior" meaning uphold rules and acceptance of the public narrative, clearly limiting freedom of speech and personal liberties.

Mussolini from Bologna?

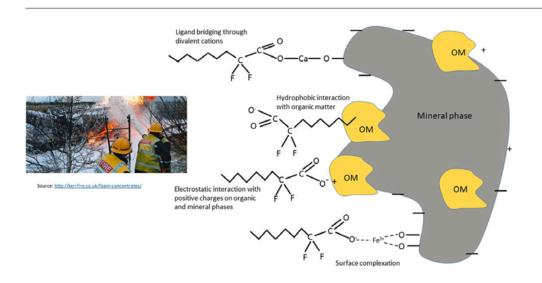
No, from Predappion in Romagna

Science of the Total Environment

Senter for forskningsdrevet innovasjon

journal homepage: www.elsevier.com/locate/scitotenv

A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substances (PFASs)



Yasong Li ^{a,1}, Danielle P. Oliver ^{a,*}, Rai S. Kookana ^{a,b}

HIGHLIGHTS

- Significant relationships between K_d values and OC for some PFASs, but generally R² < 0.40.
- Strong relationships between K_d values and OC and pH for 9 PFASs with R² > 0.60.
- Field based K_d values were always larger than those measured in laboratory by batch method.
- Lack of full characterisation of sorbent properties is limiting the utility of literature data.

GRAPHICAL ABSTRACT

^a CSIRO Land and Water, Locked Bag 2, Glen Osmond, 5064, South Australia, Australia

^b University of Adelaide, Glen Osmond, 5064, South Australia, Australia

