

DISTRIBUTION OF ORGANIC ADDITIVES SUCH AS PLASTICISERS DURING DISSOLUTION-PRECIPITATION POLYMER RECYCLING

<u>R. Denolf</u>, J. Hogie, S. De Meester

DEPARTMENT OF GREEN CHEMISTRY AND TECHNOLOGY LABORATORY FOR CIRCULAR PROCESS ENGINEERING

17 June 2022

(EU28+		
+77%	-44%	+19%
ENERGY	LANDFILL	COLLECTED PLASTIC
RECOVERY		POST-CONSUMER
		WASTE 2006-2018

GOAL: CIRCULAR ECONOMY

Source: (PlasticsEurope, 2018)

CHEMICAL RECYCLING

- 1. Solvent-based purification, the polymer does not change on a molecular level (physicochemical process)
- 2. Decomposition, breaking of molecular bonds to recover the monomers of the polymer (solvolysis)
- **3.** Conversion, breaking of molecular bonds but the output often resembles petroleum products (pyrolysis and gasification)

DISSOLUTION PRECIPITATION PROCESS

Selective dissolution **Removal of impurities** No chain degradation

HANSEN SOLUBILITY PARAMETERS

Total cohesive energy split into three parts:

- $\rightarrow \delta D$: dispersive forces
- $\rightarrow \delta P$: permanent dipole interactions
- $\rightarrow \delta H$: hydrogen bonds

A measure of "like", to determine good and bad solvents

25.

201

[dD]

25

6

TERNARY DIAGRAM FOR POLYMERS

Commonly used to predict the membrane structure in membrane phase inversion processes.

Binodal curve: boundary between stable and metastable region Spinodal curve: boundary between metastable and unstable region \rightarrow Theoretical construction: combine **HSP** and **Flory-Huggins** theory

Source: N. Hilal, A. F. Ismail, and C. Wright, Membrane Fabrication. CRC Press, 2015. 7

THEORETICAL CONSTRUCTION

Theoretical construction in ternary diagram based on extended **Flory-Huggins** theory:

 $\frac{\Delta G_m}{RT} = n_1 ln\phi_1 + n_2 ln\phi_2 + n_3 ln\phi_3 + g_{12}(u_2)n_1\phi_2 + \chi_{13}n_1\phi_3 + \chi_{23}n_2\phi_3$

Spinodal curve, boundary between unstable and metastable region

$$\frac{\partial^2 \Delta G}{\partial \phi^2} = 0$$

(ΑΜΡΟΣ ΚΟΡΙΡΊΚ

 ΔG_m = Gibbs free energy of mixing $\exists tween_{\phi_i} = moles of component i \\ \phi_i = volume fraction of component i$ g_{ii} = binary interaction parameter χ = Flory-Huggins interaction parameter

$$_2 = \frac{\varphi_1}{\phi_1 + \phi_2}$$

1, 2 & 3 = nonsolvent, solvent & polymer, respectively

BUT WHAT DOES IT SAY?

Precipitation form depends on:

– NS/S-ratio

. . .

– Temperature

WHAT ELSE DOES IT SAY

Mass balances

Minimum nonsolvent addition

PHTHALATE ANALYSIS

Ultrasonic extraction

PHTHALATE REMOVAL (PRELIMINARY DATA)

Temperature (°C)	Polymer concentration in solution (m%)	DEHP removal (m%)	DEHT removal (m%)
20	10	59.3	48.9
20	12.5	46.7	35.4
30	10	63.9	54.4
30	12.5	48.2	37.6
30	15	46.6	33.6

<u>CONCLUSION</u>

Prediction of:

- Nonsolvent requirements
- Polymer precipitation
- Phase compositions
- Mass balances
- Plasticisers are removable, but:
 - Further optimisation required
 - -Include more plasticisers

Ruben Denolf PhD student

DEPARTMENT OF GREEN CHEMISTRY AND TECHNOLOGY LCPE – LABORATORY FOR CIRCULAR PROCESS ENGINEERING

- E ruben.denolf@ugent.be
- E joel.hogie@ugent.be
- E steven.demeester@ugent.be

www.ugent.be

This work was financially supported by the FWO project Solvation.

f Universiteit Gent

- 🦉 @ugent
- @ugent
- in Ghent University