

CORFUZOZZ

Polyhydroxyalkanoate production from yeast industry wastewater using mixed microbial culture

Tülin YILMAZ NAYIR Environmental Engineering Department

PROJECT OVERVIEW

The Project steps are :

1. PHA production in activated sludge with using yeast industry wastewater (YWW) as a feeding stream,

- 2. PHA extraction with using different extraction methods,
- 3. Nanofiber production

Content

- I. Introduction to PHB
- II. PHB produced microorganisms and substrates
- III. Experimental Procedure
- IV. Results

V. Conclusion and Future Work

I. Introduction to PHB

in the bacterium Bacillus megaterium.

 PHB is the most widely studied and bestcharacterized member of PHAs. n=1, R=metil => poli-3-hidroksibütirat (PHB)

II. PHB produced microorganisms and substrates

Food waste source	Microorganis	ims(s)	PHA polymer type	Cultivation	Dry cell weight (g I ⁻¹)	Maximum PHA production reported (g PHA g ⁻¹ dcw)	References
		a. 194					محمدة ورجيها فا
Spent coffee ground:	oil Cupriavidus DSM 428	necator	PHB	Fermenter, fed- batch	16.7	78.40%	Cruz et al. (2014)
Starch	Azotobacte chroococc		PHB	Fermenter, batch	54	46%	Kim (2000)
Sugarcane molasse:	Bacillus me	anterium	PHB	Fermenter, fed-	72.2	42%	Kulpreecha et al.
Rice straw	Bacillus fim		PHB	Fermenter, batch	1.9	89%	Sindhu et al. (2013)
Molasses	Psuedomon	85	PHA	Flask, batch	10.54	20.63%	Chaudhry et al.
Food scraps from cafeteria Kitchen waste	C. necator C. necator	PHBV	Fermenter, b	atch 22.7	72.60%		Du and Yu (2002)
			Fermenter, b				Omar et al. (2011)
	Mixed microbial	P	HRV P	Fermenter, pulse	and all all all all all all all all all al	Albuquerque et al. (2011)	
Fermented molasses				feed	56%	AE	ouquerque et al. (2011)
	Activated cludge consortia		Nort Trea		20%		uquerque <i>et al.</i> (2011) ler <i>et al.</i> (2012)
molasses	culture Activated cludge		Nort Trea	feed			

Nielsen, C., Rahman, A., Rehman, A. U., Walsh, M. K., & Miller, C. D. (2017). Food waste conversion to microbial polyhydroxyalkanoates. In *Microbial Biotechnology* (Vol. 10, Issue 6, pp. 1338–1352). John Wiley and Sons Ltd. https://doi.org/10.1111/1751-7915.12776

III. Experimental Procedure

Parameter	Value		
рН	7.5-7.88		
COD (mg/L)	2500-3430		
∑N (mg/L)	100-200		
∑P (mg/L)	6.7-21.9		
Suspended solids (SS) (mg/L)	450-500		
Total volatile fatty acids (VFA) (mg/L)	950-3000		
Acetic acid: %90			
Propionic acid:%3			
Butyric acid: %3			
Isobutyric acid: %2			
i-valeric acid:%1			
Valeric acid:%1			

III. Experimental Procedure

- Inoculum: activated sludge
- <u>Feeding stream</u>: anaerobically pre-treated yeast industry wastewater (YWW)
- two steps PHB production from yeast industry wastewater in activated sludge was investigated:

1) feeding of activated sludge with anaerobically pre-treated yeast industry wastewater (enrichment reactor)

2) PHB accumulation by pulse addition in the excess sludge of enrichment reactor.

III. Experimental Procedure

Analytical methods:

- Chemical oxygen demand (COD),
- Total suspended solids (TSS),
- Volatile suspended solids (VSS),
- PHB content (%cell dry weight (CDW)
- Dissolved oxygen (DO),
- PHB extraction

IV. RESULTS

Concentration profiles of COD, TSS and VSS

- COD value of wastewater was increased step by step to increase the TSS.
- End of the 20 days operation while SBR still continues for the enrichment stage, excees sludge was used for the accumulation stage.

IV. RESULTS

Concentrations of COD and PHB in the accumulation reactor with pulse addition of the substrate

- The wastewater was fed by pulse addition (4 pulses) controlled by the DO concentration.
- PHB storage was increased to 0.31 mg PHB/mg CDW at the end of 4 pulses which was 0.14 mg PHB/mg CDW at begining of the accumulation.

IV. RESULTS

FTIR and TGA analysis of biopolymer comparison with commercial PHB sample

VI. CONCLUSION and FUTURE WORK

• There are few study which are feeded to enrichment reactor with wastewater stream instead of synthetic acetate and mineral solution. In this study, the culture was able to accumulate 30% PHB (for CDW).

- Study is still going on with the accumulation experiments to increase the PHB content in the (MMC).
- Extraction experiments continue in parallel with the accumulation.
- Extracted polymers are going to be used for the nanofiber production
- End of this project, we will have developed new methods for the production of biopolymer by evaluating waste and extracting this polymer using environmentally friendly methods.

Thank you for your attention!

This study was funded by Scientific and Technological Research Council of Turkey (TUBITAK, project number)