

GHENT UNIVERSITY

DEVELOPMENT OF MICROPLASTIC REMEDIATION TECHNIQUES FROM MARINE SEDIMENTS

Presented by Ir. Michiel Van Melkebeke^{1,2} Co-authored by: Prof. Dr. Ir. Steven De Meester¹ and Prof. Dr. Colin Janssen²

Friday 17th of June 2022 16:30 - 16:45Room 2 Session XXII

PLASTIC POLLUTION

PLASTICS IN THE MARINE ENVIRONMENT

WHERE DO THEY COME FROM? WHERE DO THEY GO?

Source: Eunomia Research & Consulting Ltd. (2016) Plastics in the Marine Environment

eunomia 👪

RESEARCH OBJECTIVE

WHAT IS THE TARGET FEED?

Maintenance dredging:

Scenario 1

Scenario 2

Beach nourishments:

	Size range		Average density	Contact angle*
reed constituent	Scenario 1	Scenario 2	[kg/m ³]	[°]
Sediment	< 63 µm	63 µm – 2 mm	2650	< 90
Low-density MPs	1 µm – 5 mm	1 µm – 5 mm	925	> 90
High-density MPs	1 µm – 5 mm	1 µm – 5 mm	1400	> 90

*contact angle > 90° = hydrophobic, contact angle < 90° = hydrophilic

Explore techniques that separate particles based on density and/or polarity

SINKING BEHAVIOUR OF MICROPLASTICS

Sieving + Selection

DRAG MODELS \longrightarrow Sphericity ϕ and Circularity χ

Author(s) drag lawShape descriptorsAverage error [%]RMSEDietrich (1982)CSF, P19.4328.46Haider & Levenspiel (1989) ϕ 60.5367.41Swamee & Ojha (1991) $\beta = f(CSF)$ 34.0846.28Ganser (1993)K1 = f(ϕ), K2 = f(ϕ)20.1125.75Dellino et al. (2005) $\Psi = f(\phi, \chi)$ 23.8830.61Pfeiffer et al. (2005) ϕ 48.4659.78Camenen (2007)CSF, P29.0933.04Dioguardi & Mele (2015) $\Psi = f(\phi, \chi)$ 46.9050.93Bagheri & Bonadonna (2016) F , e21.8927.35Dioguardi et al. (2018) $\Psi = f(\phi, \chi)$ 13.2019.09 $\int_{0}^{0.25} + \frac{24}{Re_p} (0.1806 Re_p^{0.6459}) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1 + \frac{6880.95}{Re_m} \Psi^{5.05}}$				
Dietrich (1982)CSF, P19.4328.46Haider & Levenspiel (1989) ϕ 60.5367.41Swamee & Ojha (1991) $\beta = f(CSF)$ 34.0846.28Ganser (1993)K1 = $t(\Phi)$, K2 = $t(\Phi)$ 20.1125.75Dellino <i>et al.</i> (2005) $\Psi = f(\Phi, \chi)$ 23.8830.61Pfeiffer <i>et al.</i> (2005) ϕ 48.4659.78Camenen (2007)CSF, P29.0933.04Dioguardi & Mele (2015) $\Psi = f(\Phi, \chi)$ 46.9050.93Bagheri & Bonadonna (2016) F , e21.8927.35Dioguardi <i>et al.</i> (2018) $\Psi = f(\Phi, \chi)$ 13.2019.09 $\prod_{n=p}^{0.25} + \frac{24}{Re_p} (0.1806 Re_p^{0.6459}) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1 + \frac{6880.95}{Re_n}} \Psi^{5.05}$	Author(s) drag law	Shape descriptors	Average error [%]	RMSE
Haider & Levenspiel (1989) ϕ 60.5367.41Swamee & Ojha (1991) $\beta = f(CSF)$ 34.0846.28Ganser (1993) $K1 = f(\Phi), K2 = f(\Phi)$ 20.1125.75Dellino et al. (2005) $\Psi = f(\Phi, \chi)$ 23.8830.61Pfeiffer et al. (2005) ϕ 48.4659.78Camenen (2007)CSF, P29.0933.04Dioguardi & Mele (2015) $\Psi = f(\Phi, \chi)$ 46.9050.93Bagheri & Bonadonna (2016) F, e 21.8927.35Dioguardi et al. (2018) $\Psi = f(\Phi, \chi)$ 13.2019.09 $\prod_{e=p}^{0.25} \left(\frac{1-\Psi}{Re_p} + 1\right)^{0.25} + \frac{24}{Re_p} \left(0.1806 Re_p^{0.6459}\right) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1 + \frac{6880.95}{Re_m}} \Psi^{5.05}$	Dietrich (1982)	CSF, P	19.43	28.46
Swamee & Ojha (1991) $\beta = f(CSF)$ 34.0846.28Ganser (1993)K1 = f(ϕ), K2 = f(ϕ)20.1125.75Dellino et al. (2005) $\Psi = f(\phi, \chi)$ 23.8830.61Pfeiffer et al. (2005) ϕ 48.4659.78Camenen (2007)CSF, P29.0933.04Dioguardi & Mele (2015) $\Psi = f(\phi, \chi)$ 46.9050.93Bagheri & Bonadonna (2016) F , e21.8927.35Dioguardi et al. (2018) $\Psi = f(\phi, \chi)$ 13.2019.09 $\bigcap_{n=1}^{\infty} P_n = \frac{24}{Re_p} \left(\frac{1-\Psi}{Re_p} + 1\right)^{0.25} + \frac{24}{Re_p} (0.1806 Re_p^{0.6459}) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1 + \frac{6880.95}{Re_m}} \Psi^{5.05}$	Haider & Levenspiel (1989)	ϕ	60.53	67.41
Ganser (1993)K1 = f(Φ), K2 = f(Φ)20.1125.75Dellino et al. (2005) $\Psi = f(\Phi, \chi)$ 23.8830.61Pfeiffer et al. (2005) φ 48.4659.78Camenen (2007)CSF, P29.0933.04Dioguardi & Mele (2015) $\Psi = f(\Phi, \chi)$ 46.9050.93Bagheri & Bonadonna (2016) F, e 21.8927.35Dioguardi et al. (2018) $\Psi = f(\Phi, \chi)$ 13.2019.09 $\bigcap_{H=H}$ $C_D = \frac{24}{Re_p} \left(\frac{1-\Psi}{Re_p} + 1\right)^{0.25} + \frac{24}{Re_p} (0.1806 Re_p^{0.6459}) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1+\frac{6880.95}{Re_m}} \Psi^{5.05}$	Swamee & Ojha (1991)	$\beta = f(CSF)$	34.08	46.28
Dellino <i>et al.</i> (2005) $\Psi = f(\Phi, \chi)$ 23.88 30.61 Pfeiffer <i>et al.</i> (2005) φ 48.46 59.78 Camenen (2007) CSF, P 29.09 33.04 Dioguardi & Mele (2015) $\Psi = f(\Phi, \chi)$ 46.90 50.93 Bagheri & Bonadonna (2016) F, e 21.89 27.35 Dioguardi <i>et al.</i> (2018) $\Psi = f(\Phi, \chi)$ 13.20 19.09 $f(\Phi, \chi)$ 13.20 19.09 $f(\Phi, \chi) = f(\Phi, \chi) + 1 \int_{0.25}^{0.25} + \frac{24}{Re_p} (0.1806 Re_p^{0.6459}) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1 + \frac{6880.95}{Re_m}} \Psi^{5.05}$	Ganser (1993)	$K1 = f(\Phi), K2 = f(\Phi)$	20.11	25.75
Pfeiffer <i>et al.</i> (2005) φ 48.46 59.78 Camenen (2007) CSF, P 29.09 33.04 Dioguardi & Mele (2015) $\Psi = f(\Phi, \chi)$ 46.90 50.93 Bagheri & Bonadonna (2016) <i>F</i> , e 21.89 27.35 Dioguardi <i>et al.</i> (2018) $\Psi = f(\Phi, \chi)$ 13.20 19.09 $f(\Phi, \chi)$ 13.20 19.09 $C_D = \frac{24}{Re_p} \left(\frac{1-\Psi}{Re_p}+1\right)^{0.25} + \frac{24}{Re_p} \left(0.1806 Re_p^{0.6459}\right) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1+\frac{6880.95}{Re_m}} \Psi^{5.05}$	Dellino <i>et al.</i> (2005)	$\Psi = f(\Phi, \chi)$	23.88	30.61
Camenen (2007) CSF, P Dioguardi & Mele (2015) Bagheri & Bonadonna (2016) Dioguardi et al. (2018) $\Psi = f(\Phi, \chi)$ $\Psi = f(\Phi, \chi)$ $U = f(\Phi, \chi)$ $\Psi = f(\Phi, \chi)$ $U = f(\Phi$	Pfeiffer <i>et al.</i> (2005)	φ	48.46	59.78
Dioguardi & Mele (2015) $\Psi = f(\Phi, \chi)$ 46.90 50.93 Bagheri & Bonadonna (2016) F , e 21.89 27.35 Dioguardi et al. (2018) $\Psi = f(\Phi, \chi)$ 13.20 19.09 $C_D = \frac{24}{Re_p} \left(\frac{1-\Psi}{Re_p} + 1\right)^{0.25} + \frac{24}{Re_p} \left(0.1806 Re_p^{0.6459}\right) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1 + \frac{6880.95}{Re_p}} \Psi^{5.05}$	Camenen (2007)	CSF, P	29.09	33.04
Bagheri & Bonadonna (2016) F, e 21.89 27.35 Dioguardi et al. (2018) $\Psi = f(\Phi, \chi)$ 13.20 19.09 $f(\Phi, \chi) = f(\Phi, \chi) + \frac{24}{Re_p} \left(0.1806 Re_p^{0.6459}\right) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1 + \frac{6880.95}{Re_p}} \Psi^{5.05}$	Dioguardi & Mele (2015)	$\Psi = f(\Phi, \chi)$	46.90	50.93
Dioguardi <i>et al.</i> (2018) $\Psi = f(\Phi, \chi)$ 13.20 19.09 $C_D = \frac{24}{Re_p} \left(\frac{1-\Psi}{Re_p}+1\right)^{0.25} + \frac{24}{Re_p} \left(0.1806 Re_p^{0.6459}\right) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1+\frac{6880.95}{Re_p}} \Psi^{5.05}$	Bagheri & Bonadonna (2016)	<i>F</i> , e	21.89	27.35
$\widehat{\text{GHENT}} \qquad C_D = \frac{24}{Re_p} \left(\frac{1-\Psi}{Re_p} + 1 \right)^{0.25} + \frac{24}{Re_p} \left(0.1806 \ Re_p^{0.6459} \right) \Psi^{-Re_p^{0.08}} + \frac{0.4251}{1 + \frac{6880.95}{Re_m} \Psi^{5.05}}$	Dioguardi <i>et al.</i> (2018)	$\Psi = f(\Phi, \chi)$	13.20	19.09
	$\widehat{\underline{finit}} \qquad $	$\left(\frac{\Psi}{e_p} + 1\right)^{0.25} + \frac{24}{Re_p} \left(0.18\right)^{0.25}$	$06 Re_p^{0.6459}) \Psi^{-Re_p^{0.08}} + -$	0.4251 $1 + \frac{6880.95}{Re_{m}} \Psi^{5.}$

ł		

WHAT ABOUT BIOFOULING?

ed fixation weight

WHAT IS THE TARGET FEED?

	Siz	e range	Average density	
Feed constituent	Scenario 1	Scenario 2	[kg/m ³]	
Sediment	< 63 µm	63 µm – 2 mm	2650	
Low-density MPs	1 µr	n – 5 mm	925	
High-density MPs	1 µr	n – 5 mm	1400	
Bio-fouled MPs	1 µr	n – 5 mm	± 1100	

*water contact angle > 90° = hydrophobic, water contact angle < 90° = hydrophilic

Selection of most promising techniques: centrifugal sedimentation and froth flotation

Contact angle* [°]	Average sphericity	
< 90	> 0.7	
> 90	0.01 – 1	
> 90	0.01 – 1	
< 40	0.01 – 1	

DOES CENTRIFUGAL SEDIMENTATION WORK?

<u>CENTRIFUGE GRADE EFFICIENCY CURVES</u>

UNIVERSITY

WHAT ABOUT FROTH FLOTATION?

Promising...

- Based on difference in polarity
- Microplastics separated in a concentrated stream

...but practical issues in traditional setups

- How to deal with sediment (clogging)?
- How to create optimal air bubble flows?
- How to increase system flexibility?

GHENT UNIVERSITY

Source: Crawford C. B and Quinn B. Microplastic separation techniques. In Microplastic Pollutants, p. 203–218. Elsevier, 2017.

DESIGN OF A NOVEL INSTALLATION

PROMISING RESULTS

	High-concentration feed	(1000:1)
Low-density microplas	stics	10
High-density micropla	stics	> 9
Sediment - Scenario 1 - Scenario 2		± 5.0 ± 0.1
	Average-concentration fee	ed (100:1)
Low-density microplas	Average-concentration fee stics	ed (100:1) 10
Low-density microplas High-density micropla	Average-concentration fee stics astics	ed (100:1) 10 ± 8

WHAT IS NEXT?

16

Ir. Michiel Van Melkebeke

PhD researcher Green Chemistry & Technology Laboratory for Circular Process Engineering (LCPE)

GHENT UNIVERSITY

Ε Michiel.VanMelkebeke@UGent.be Т +32 471 35 86 66

www.ugent.be

This work was financially supported by the Moonshot SBO project PREFER.

