

TOWARDS IMPROVED DEODORIZATION OF POST-CONSUMER PLASTIC WASTE: IDENTIFYING THE INDUSTRIAL HURDLES

M. Roosen, T. De Somer, R. Demets, K. M. Van Geem, A. Dumoulin, S. De Meester

OUR GOAL: ACHIEVING CLOSED-LOOP

Mechanical and chemical pretreatment processes

- Additives
- Residues
- Contaminants

Closing the loop

- Adhesives

Who are we?

Started in 2016 by prof. Steven De Meester

Now a team of around 25 PhD students & 4 technicians

Focus on organic waste, plastics, and textiles

https://www.lcpe.ugent.be/

OVERVIEW RESEARCH

https://doi.org/10.1016/j.wasman.

washing
media for #
polymers

Comparing

Quantification method

Benchmarking industrial washing efficiency

Kinetic study on deodorization

optimizing water treatment Effect of

Modelling and

https://doi.org/10.1016/j.resconrec.2020.104907

https://doi.org/10.1016/j.resconrec.2022.106267

temperature

and \neq process

parameters

2018 2020 2022

QUANTIFYING DEODORIZATION

- Development of an analytical method to quantify odour removal in plastic waste recycling processes
- 3 different sampling techniques followed by GC-MS analysis

removal efficiencies

PDMS & CAR/PDMS

Benchmarking current industrial washing

Conclusion:

- Apolar and high-boiling components are still present after washing
- After extrusion, most of the components are again detected

Lab-scale washing

- Water is least efficient
- NaOH + detergent is efficient for PET based packaging
- Detergent is efficient for PO based packaging (mimicking PET recycling is not the best option)

Kinetic study on deodorization

Kinetic study for PE films with different media at different T° Linking isotherm and kinetic models to experimental results

Langmuir Freundlich	$q_e = rac{K_L * q_{m_l} * C_e}{1 + K_L * C_e}$ $q_e = K_F * C_e^{rac{1}{n_F}}$	
Freundlich	$q_e = K_F * C_e^{\frac{1}{n_F}}$	
Temkin	$q_e = \frac{R * T}{b_T} \ln(A_T * C_e)$	
Dubinin-Radushkevish	$q_e = q_s * e^{-K_{ad} * \varepsilon^2}$	
Zero order	$\frac{dq}{dt} = -k_{0,des}$	
First order	$\frac{dq}{dt} = -k_{1,des} * q$	
Second order	$\frac{dq}{dt} = -k_{2,des} * q^2$	
]	Dubinin-Radushkevish Zero order First order	Dubinin-Radushkevish $q_e = q_s * e^{-K_{ad}*\varepsilon^2}$ Zero order $\frac{dq}{dt} = -k_{0,des}$ First order $\frac{dq}{dt} = -k_{1,des}*q$ Second order $\frac{dq}{dt} = -k_{2,des}*q^2$

 $NaOH < H_2O < CTAB = NaOH + CTAB < EtOAc$

Kinetic study on deodorization

Reversible first order model best-fitted kinetic model

➤ Desorption AND adsorption determine the efficiency of the deodorization process via reversibility of the sorption process

$$\frac{dq}{dt} = -k_{RFO,1} * q + k_{RFO,2} * C \qquad \qquad \frac{dq}{dt} = -k_{RFO,1} * q + k_{RFO,2} * \frac{(q_0 - q) * m}{V}$$
Desorption Adsorption

Washing with 'dirty' medium will not result in high removal efficiencies, even at high temperatures and with caustic

But: often high recirculation rates of water

ASPEN simulation:

RR > 60% → drop in removal efficiency (currently >90%)

Take home messages

- 1) Washing medium should be tailored on plastic type
- 2) Washing with dirty water does NOT result in odour-free plastics
- 3) Water management is key towards efficient and costeffective washing

Martijn Roosen

DEPARTMENT OF GREEN CHEMISTRY AND TECHNOLOGY

Е martijn.roosen@ugent.be

+32 (0) 56 241236

www.ugent.be www.lcpe.ugent.be

- **Ghent University**
- @ugent
- **Ghent University** in

