

Solid waste biomass as a potential feedstock for sustainable aviation fuel production

<u>E. Emmanouilidou¹</u>, S. Mitkidou¹, A. Agapiou², N. Kokkinos¹ ¹ Department of Chemistry, International Hellenic University, Ag. Loukas, 654 04 Kavala, Greece ² Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus

Presenter: Elissavet Emmanouilidou

PhD Candidate Department of Chemistry International Hellenic University

Presentation Outline

- > Introduction
- > Purpose
- Research method
- Results and discussion
- Conclusions

Introduction

Aviation sector:

- Contributes approximately 2% of total CO₂ emissions.
- Sustainable Aviation Fuels (SAF) will play a key role for early reductions of CO₂ emissions by 2030 and deeper reductions by 2050.
- Non-edible feedstocks comprise favorable choice and include municipal solid waste (MSW) and forestry residues.
- The price of biojet fuel depends on feedstock cost, availability, conventional jet fuels' price volatility and commercialization feasibility of production technologies.

Introduction

Figure 1. ASTM approved pathways for SAF production (IRENA, Reaching Zero with Renweables: Biojet fuels, 2021).

Purpose

- Investigation of the potential of SAF production from waste materials.
- Waste materials: MSW including food waste and waste cooking oils, plastic waste as well as agricultural and forestry residues.
- Current conversion technologies based on recent literature data.

Research method

• Systematic review by using PRISMA analysis.

Results

Table 1. Various waste materials as feedstock for biofuel and biojet fuel production [3-10].

Feedstock	Conversion method	Reaction conditions	Obtained biofuels	Highlights
Food waste/WCO				0 0 **
Chicken fat oil from chicken waste	Hydroprocessing	Hydroprocessing reactor Temperature: 400 °C Pressure: 6.07 MPa H ₂ /oil molar ratio: 450 v/v Catalyst: DHC-8 commercial Hydroisomerization reactor Pressure: 8.1 MPa Temperature: 480 °C Catalyst: Pt/amorphous SiO ₂ - Al ₂ O ₃	Biojet Yield: 47.46%	Thermally coupled distillation columns resulted in 22% of CO ₂ emissions and 33% of utilities cost reduction.
Hydrotreated paraffins from WCO	Hydrocracking/ Hydro-isomerization	Temperature: 380 °C Pressure: 4 MPa H ₂ /alkane molar ratio: 13.6 Catalyst: NiAg/SAPO-11 (5 g) Time: 2.5 h	Biojet Yield: 54% Selectivity: 67% Main components: C ₁₅ -C ₁₈ alkanes	Relative poor cold flow properties. Catalyst performed excellent isomerization and medium cracking properties.
Waste oil with high viscosity	Catalytic cracking and hydrogenation/aromatization	Catalytic cracking Base catalyst: Na ₂ CO ₃ (100 g) Amount of feedstock: 2 kg Temperature increasing rate: 10°C/min Column temperature: 280 °C Hydrogenation Catalyst: Ni/ZSM-5	Biojet Yield: up to 60% Biodiesel Yield: 15-30%	Two-step conversion is efficient for low quality triglycerides. Diesel fraction can also be obtained by adjusting operating parameters.

Results

Table 1. Various waste materials as feedstock for biofuel and biojet fuel production [3-11].

Feedstock	Conversion method	Reaction conditions	Obtained biofuels	Highlights
Food waste/WCO				
Waste cooking oil	Catalytic cracking and aromatization and hydrogenation	Catalytic cracking Base catalyst: Na ₂ CO ₃ (5 wt. %) Amount of feedstock: 1500 g Pyrolysis temperature: 350 – 450 °C Aromatization 80 g distilled aviation fuel Catalyst: HZSM-5 (5 wt. %) Temperature: 350 °C Time: 6 h Hydrogenation Catalyst: Pd/AC (5 wt. %)	Liquid hydrocarbons Yield: 76 ± 1.0% Biojet Yield: 29.5 ± 1.9 %	Biojet fuel presented similar properties to fossil based aviation fuels. The freezing point was found -48 °C indicating good fluidity in low temperature. During catalytic cracking biodiesel can also be produced.
Food waste, sewage sludge, blend of food waste and fats	Hydrothermal liquefaction and hydrotreatment	<i>Hydrotreatment of bio-crude</i> Catalysts: sulfided NiMo and CoMo	<i>Biojet</i> Yield: 65% Average carbon distribution: 11.2	Carbon content increased >11%. Oxygen content of bio- crude reduced >90% Drawback : High nitrogen content after upgrading.
Agricultural wastes and waste frying oil	Pyrolysis and catalytic hydrogenation	Amount of feedstock: 300 g Heating rate: 20 °C min ⁻¹ Temperature: 850 °C Catalyst: NiMo (200 g) 1Hydrogen pumping rate: 10 mL min ⁻¹ Hydrogenation temperature: 450 °C	<i>Pyrolysis oil</i> Yield: 54% <i>Hydrogenated bio-oil</i> aliphatic hydrocarbons: 21% aromatics: 25% cyclic hydrocarbons: 16%	After hydrogenation, more than 60% of oxygenates and 12% of nitrogen compounds were removed. Hydrogenated bio-oil exhibited similar properties with conventional jet fuel

Results

Table 1. Various waste materials as feedstock for biofuel and biojet fuel production [3-12].

Feedstock	Conversion method	Reaction conditions	Obtained biofuels	Highlights
Plastic/Lignocellulosi	c wastes			
Polystyrene (PS) waste	Thermal liquefaction and fractional distillation	Amount of feedstock: 750 mg Temperature: 100 – 400 °C	Biojet Yield: 23% Main components C_6 to C_{16}	Aromatic and aliphatic compounds in produced fuels. Further modification is required for commercial use.
Waste plastics (PE,PP,PS,PET)	Catalytic pyrolysis and fractional distillation	Catalyst: graphite Temperature: 350 °C – 450 °C	<i>Biojet</i> Yield: 80%	Chemical properties of biojet fuel were comparable to aviation jet fuel.
Waste plastic LDPE	Catalytic hydrocracking	Catalyst: Pt/Al/MCM-48 (1 wt. %) Hydrogen pressure: 4 MPa Temperature: 573 K Time: 4 h	Main components C ₉ –C ₁₅ <i>Biojet</i> Yield: 85.9%	Catalytic performance was not reduced after four cycles .
Plastic waste (PE,PP) and agricultural biomass	Co-gasification-FT synthesis and upgrading	Overall process included 6 units.	Biofuels yield 13.06% Biojet Mass distribution: 41.8% Output: 1697.45 kg/h	Plastic addition to biomass improved the volatility of mixture. Biojet fuel emissions: 20.14 g CO ₂ eq/MJ Minimum selling price: 1.37 €/L. Heat exchanger network reduced total cost of GFT synthesis.

Discussion

- Utilization of biomass waste materials as feedstocks for SAF production is of great significance for future demands as well as for cost minimization and environmental protection.
- To date, the majority of aviation biofuels is produced from oleochemical/lipid feedstocks such as vegetable oils and biowastes.
- Obtained biofuels have the **potential** to be considered as drop-in jet fuels and used as blends with conventional jet fuels in aircraft engines without any further modification.
- Catalytic hydrogenation or **HEFA pathway** is a promising method for WCOs conversion into SAF, nonetheless pretreatment, including filtration and cleaning are still required.

Elissavet Emmanouilidou

Discussion

- Agricultural wastes are still underutilized as an alternative feedstock for biofuels and value added chemicals production.
- Lignocellulosic residues could contribute to sustainable biojet fuel production.
- Thermal processes can be used to convert plastics into hydrocarbon fuels which have unlimited applications in airline industries, as well as in transportation and power generation industries.
- **Co-pyrolysis** of plastic waste and biomass-based materials serves as a **promising way** to convert wastes into value added products and biofuels with high product yields and quality.

Conclusions

- **HEFA pathway** for oleochemical feedstocks will continue to dominate in near future.
- Waste-biomass feedstocks can contribute to scale up the production of biojet fuels.
- Thermochemical methods for lignocellulose-based waste materials present also high potential to contribute in global biojet fuel production.
- **Ongoing challenges** for SAF production through advanced methods are closely related to feedstock availability, high production cost and lack of policy support.

Indicative Bibliography

- 1. Abrantes, I., et al., Sustainable aviation fuels and imminent technologies CO2 emissions evolution towards 2050. Journal of Cleaner Production, 2021. 313.
- 2. IRENA, *Reaching Zero with Renweables: Biojet fuels*, 2021, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Sep/IRENA_Reaching_zero_2020.pdf. (Accessed 10/02/2022)
- 3. Moreno-Gómez, A.L., et al., *Modelling, simulation and intensification of the hydroprocessing of chicken fat to produce renewable aviation fuel.* Chemical Engineering and Processing Process Intensification, 2021. **159**.
- 4. Chen, R.-X. and W.-C. Wang, The production of renewable aviation fuel from waste cooking oil. Part I: Bio-alkane conversion through hydro-processing of oil. Renewable Energy, 2019. 135: p. 819-835.
- 5. Chen, Y.-K., C.-H. Hsieh, and W.-C. Wang, The production of renewable aviation fuel from waste cooking oil. Part II: Catalytic hydro-cracking/isomerization of hydro-processed alkanes into jet fuel range products. Renewable Energy, 2020. 157: p. 731-740.
- 6. Li, F., et al., *Catalytic cracking of triglycerides with a base catalyst and modification of pyrolytic oils for production of aviation fuels.* Sustainable Energy & Fuels, 2018. **2**(6): p. 1206-1215.
- 7. Cronin, D.J., et al., Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes. Energies, 2022. 15(4).
- 8. Shah, Z., et al., *Preparation of jet engine range fuel from biomass pyrolysis oil through hydrogenation and its comparison with aviation kerosene.* International Journal of Green Energy, 2019. **16**(4): p. 350-360.
- 9. Xu, J., et al., Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels. Journal of Cleaner Production, 2019. 222: p. 784-792.
- 10. Ali, Z., et al., Jet fuel produced from waste plastic with graphite as a catalyst. Materials Today: Proceedings, 2021.
- 11. Liu, Y., Hydrocracking of Polyethylene to Jet Fuel Range Hydrocarbons over Bifunctional Catalysts Containing Pt- and Al-Modified MCM-48. Reactions, 2020. 1(2): p. 195-209.
- 12. López-Fernández, A., et al., Design and Pinch Analysis of a GFT Process for Production of Biojet Fuel from Biomass and Plastics. Energies, 2021. 14(19).
- 13. Panoutsou, C., et al., Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strategy Reviews, 2021. 34: p. 100633.

Thank you for your attention

Elissavet Emmanouilidou