

- Anaerobic stabilization an efficient technology to treat organic waste, especially sewage sludge
- Circular economy: use of waste sludge from wastewater treatment plants pretreated with anaerobic stabilization
- Antibiotics in the animal sludge inhibit biogas production in anaerobic stabilization
- As non-biodegradable, antibiotic are spreading resistance genes in the environment

Levolofxacin Antibiotics moxicillir Tiamulin Toxicity Biogas gradability COD TOC OZONE Wastewater Anaerobic stabilization

Contamination

Biological sludge

Antibiotics are mostly poorly biodegradable and pass into the environment unchanged

sludge

Animal

- without decomposition adsorption on sludge
- metabolites are converted back to the parent molecule
- rivers in the EU, <10 ng L⁻¹, without acute toxicity effects
- stabilization Anaerobic

NWTP

- inhibitory effect
- Anaerobically stabilized animal sludge: risk of developing antibiotic-resistant bacteria and resistance genes

- Antibiotics represent 80% of all active ingredients found in animal feces
- animal sludge emissions 25% higher than sewage sludge emissions

- long decomposition time; tetracycline 422 days Sludge disposa (-90%)
 - fertilization: also present in soil (\approx mg kg⁻¹)

development of resistance genes, disturbances of the wider ecosystem

GENERAL

Methods

Model antibiotics

Antibiotics are mostly environmentally persistent molecules, with low biodegradability, therefore conventional biological treatment is not sufficient

Aerobic conditions, water solutions of antibiotics

Tiamulin	 Has a low biodegradability (17 % in 41 days at 400 mg L⁻¹ and 40 % in 41 days at 100 mg L⁻¹)
	 Measured at non-toxic concentration; 30min EC50 : 691 ± 261 mg L⁻¹
Levofloksacin	 Is non-biodegradable (8 % in 41 days at 100 mg L⁻¹), structure of the molecule does not have weak points to allow for hydrolysis Measured at non-toxic concentration; 30min EC50 : 1.115 ± 298 mg L⁻¹
Amoksicilin	• Is biodegradable (100 % in 41 days at 100 mg L ⁻¹), β -lactam ring, able to hydrolyze
	 Measured at non-toxic concentration; 30min EC50 : 1.026 ± 276 mg L⁻¹.

Use of animal sludge, pre-treated with anaerobic stabilization

- Inhibitory effect on anaerobic digestion; tertacyclines and sulfonamides up to -93% (Spielmeyer et al. 2018).
- Anaerobic stabilized sludge presence of resistance genes.
- Ozonation skip the level of hydrolysis, improve biogas production.

BIODEGRADATION IS INHIBITED – molecules are passing biological treatment unchanged and /or biogas production is inhibited

Anaerobic conditions

400 mg L⁻¹, inhibitions of biogas production:

- tiamulin 8 % (14 % CH₄)
- levofloxacin 27 % (44 % CH₄)
- amoxicillin 30 % (45 % CH₄)

BASELINE DATA

TIAMULIN

Ozonation of contaminated sludge

Biogas production for a raw sludge and ozonated sludge, sludge contaminated with 400 mg L⁻¹ tiamulin and ozonated contaminated sludge, dose 69 mg $O_3 g_{vss}^{-1}$

Ozone antibiotics-contaminated waste sludge to biogas production. Chemosphere. 2021, 271, 1-8. and sludge. *Ozone: science* &

engineering. 2020, 42 (2), 128-135.

RESULTS

LEVOFLOXACIN in AMOXICILLIN

Ozonation of contaminated sludge

Ozone as an element of circular economy: gaining energy from biowaste, while eliminating spread of antibiotics contamination

- Ozonation might be a key technique of circular economy when gaining energy from waste sludge, while simultaneously considering broader environmental sustainability.
- In case of antibiotics contaminated sludge (400 mg L⁻¹), ozonation (dose of 36 mg O3 g vss⁻¹) **not only** eliminates any inhibition of biogas production, but also enhances biogas production (by 68%).
- Gained excess biogas however does not compensate for cost of ozone used.
- In terms of sustainability it is important, that ozonation eliminates the spread of antibiotic resistance genes in the environment, when anaerobically stabilized sludge is applied to agriculture soils.

