

Adsorption of ammonium from AnMBR effluent using activated hydrochar as a potential fertilizer

Angesom A Geberetsadkan, Yonas Zeslase Belete, Amit Gross, Roy Bernstein

Introduction

WWTP Sludge

https://www.pt.endress.com/en/endress-hauser-group/Case-studies-applicationnotes/whitepaper-orthophosphate-measurement

Sludge cause impacts such as :

The risk of nutrient leaching to water bodies

Impacts soil biodiversity

➢ Greenhouse gas emissions

Valorization of wet organic sludge

- **Conventional methods**: Anaerobic digestion, composting, incineration, landfilling etc. **Limitations**
- Produce product with pathogens.
- Environmental issues such as odor and smell.
- ➢ Greenhouse gas emission
- ► Land consumption.

Thermochemical process Hydrothermal carbonization (HTC)

Thermochemical conversion of wet biomass

into coal like material (hydrochar).

Produce sterile product, ecofriendly, no energy intensive process.

Objectives

Investigate the capacity of hydrochar to adsorb

NH₄⁺ from wastewater.

Study potential application of hydrochar and ammonium enriched hydrochar as a soil amendment to enhance plant growth.

Capacity of hydrochar to adsorb NH₄⁺ from wastewater

Wastewater rich in NH₄⁺

Adsorption

Experimental design

Activated hydrochar significantly reduced NH₄⁺ conc. in the AnMBR effluent

for Water Research

Ben-Gurion University of the Negev

Standard for treated wastewater re-use in Israel (Inbar Y, 2007)

Hydrochar as a soil amendment planter experimental design

Treatments:

1.Sand as a (–) control + 10 mg/L N.

2.Urea as a (+) control.

3.Hydrochar (0.75 wt %).

4. Ammonium enriched hydrochar (N-AHC, 0.75 wt %).

Randomized block design

Planter experiment set up Growth period Day 40 Day 30 Day 20 Day 10 Day 0

Take home message

Activated hydrochar is a promising adsorbent for ammonium removal from wastewater.

> Hydrochar amended sand enhanced lettuce yield.

Thank you for your kind attentions !

The Zuckerberg Institute for Water Research (ZIWR)

Hydrochar adsorption from synthetic and AnMBR solution

16

