

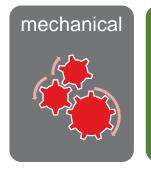
# Cosubstrate strategy for enhancing biomass degradation during low-thermal pre-treatment

<u>H. Byliński, A.Kasinath, M. Szopińska, A. Remiszewska – Skwarek, A. Łuczkiewicz, S. Fudala – Książek</u>

# **AGRICULTURAL WASTE**

Agricultural waste (AW) - unwanted or unsalable materials produced from many agricultural operations directly related to the growing of crops or raising of animals.

# **AGRICULTURAL WASTE**


Agricultural waste (AW) - unwanted or unsalable materials produced from many agricultural operations directly related to the growing of crops or raising of animals.

# The main component of AW:

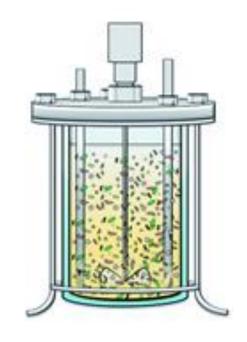
- animal waste,
- food processing waste,
- crop waste,
- hazardous agricultural waste such as insecticides, pesticides and herbicides.

# **AGRICULTURAL WASTE TREATING**

# substrate pre-treatment of AW before anaerobic digestion












# THERMAL PRE-TREATMENT

- low-thermal pre-treatment (<100°C, usually from 40 to 90°C)</li>
- aerobic condition (in order to avoid biogas production)
- mixing of substrate (in order to distribution oxygen and heating energy)





# **AIM OF THE WORK**

The aim of the work was investigation of LT-PT of various types of agricultural waste for enhancing biomass degradation.





# LOW-THERMAL PRE-PREATMENT (LT-PT)

#### SUBSTRATES USED IN THIS STUDY:

- cow dung + corn (70/30)
- distillery with beet pellet (80/20)



# LOW-THERMAL PRE-PREATMENT (LT-PT)

#### SUBSTRATES USED IN THIS STUDY:

- cow dung + corn (70/30)
- distillery with beet pellet (80/20)



low termal pre-treatment reactors – laboratory scale



# LOW-THERMAL PRE-PREATMENT (LT-PT)

# **Experimental condition:**

temperature: 45°C /50°C /55°C/60°C

duration time: 0h/24h/48h

mixing frequency: 30Hz

O<sub>2</sub> concentration: >0,2 mg/L

low termal pre-treatment reactors – laboratory scale

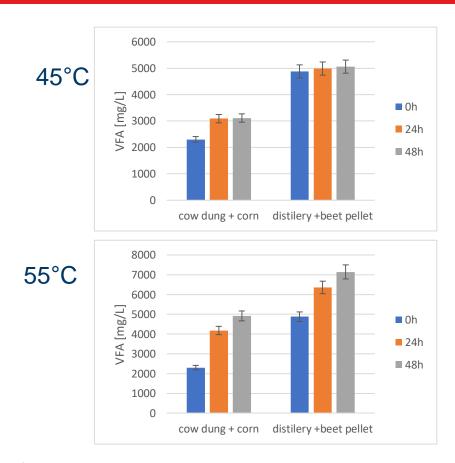


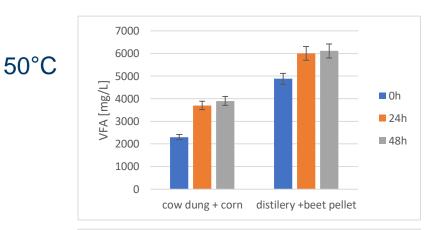


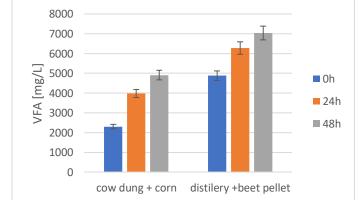
# Agricultural waste sample analysis







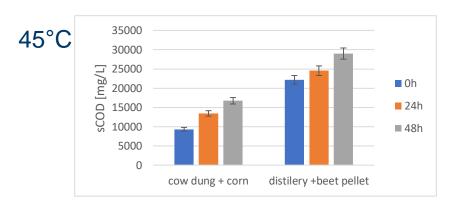


Centrifugation (50,00g/10 000 RPM/ 30 min)

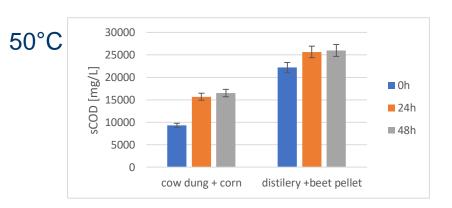

Filtration (0.45 um pore size membrane filters) analysis (Spectrophotometer DR3900 Hach Poland)

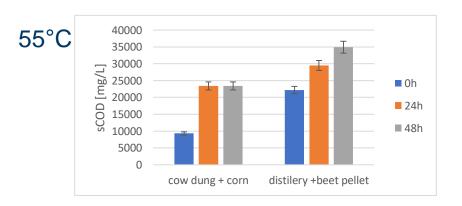
**Cuvette test** 

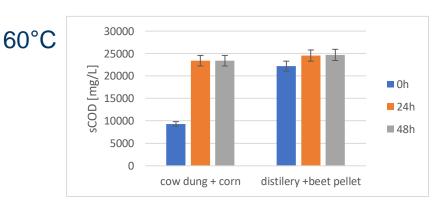
# **VFAs concentrations**







9th International Conference on Sustainable Solid Waste Management Corfu, Greece, 15 - 18 JUNE


60°C

# sCOD concentrations









9th International Conference on Sustainable Solid Waste Management Corfu, Greece, 15 - 18 JUNE

# **Disintegration degree (DD)**

$$DD = \frac{sCOD_{treated} - sCOD_0}{TCOD - sCOD_0} \times 100\%$$

DD – disintegration degree [%] sCOD<sub>treated</sub> – value of sCOD in AW samples after LT-PT [mg/L] sCOD<sub>0</sub> – value of sCOD in AW prior to LT-PT [mg/L] TCOD – total COD value obtained from chemical disintegration [mg/L]

# **Disintegration degree (DD)**

# cow dung + corn

|     | 45°C  | 50°C  | 55°C  | 60°C  |
|-----|-------|-------|-------|-------|
| 24h | 19,1% | 18,4% | 49,2% | 49,9% |
| 48h | 29,1% | 31,2% | 51,7% | 52,0% |



highest DD values for 55°C and 60°C both after 24h and 48h

# distillery + beet pellet

|     | 45°C  | 50°C  | 55°C  | 60°C  |
|-----|-------|-------|-------|-------|
| 24h | 10,7% | 14,5% | 28,5% | 11,5% |
| 48h | 25,0% | 17,9% | 46,4% | 13,2% |



highest DD value for 55°C after 48h

### CONCLUSIONS

LT-PT is a promising method used for agricultural wastes for enhancing biomass degradation

optimal condition of LT-PT of AW: temperature 55°C, duration time 48h)

presented technology will be adopted to technological scale

future research – testing other substrates using presented technology LT-PT

future research – testing LT-PT combined with enzymatic hydrolysis



#### CONCLUSIONS

### **ACKNOWLEDGEMENTS**



This study was supported by the DEZMETAN project entitled 'Development of technology for substrate preparation used in methane co-fermentation using disintegration methods', funded by the European Regional Development Fund, 4.1 'Research and development', 4.1.2 'Regional Science and Research Agendas' of the Intelligent Development Operational Program 2014–2020, POIR.04.01.02-00-0022/17–00









# INVITATION



9<sup>th</sup> International Conference on Sustainable Solid Waste Management Corfu, Greece, 15 - 18 JUNE



# GDAŃSK UNIVERSITY OF TECHNOLOGY



HISTORY IS WISDOM FUTURE IS CHALLENGE



# THANK YOU FOR YOUR ATTENTION