PDF Francesco Valentino, Paolo Pavan, Alessio Dell'Olivo, Marco Gottardo

Dept. of Environmental Sciences, Informatics and Statistics, "Ca Foscari" University of Venice

Laura Lorini, Mauro Majone

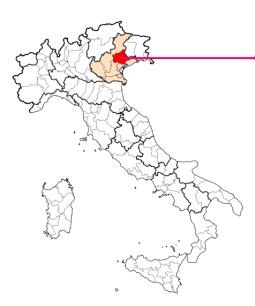
Dept. of Chemistry, La Sapienza University of Rome

David Bolzonella

Dept. of Biotechnology, University of Verona

OUTLINE

- 1) Sewage sludge generation an experimental scenario
- 2) Aims and bioprocess layout
- 3) Sludge mild hydrolysis and acidogenic fermentation

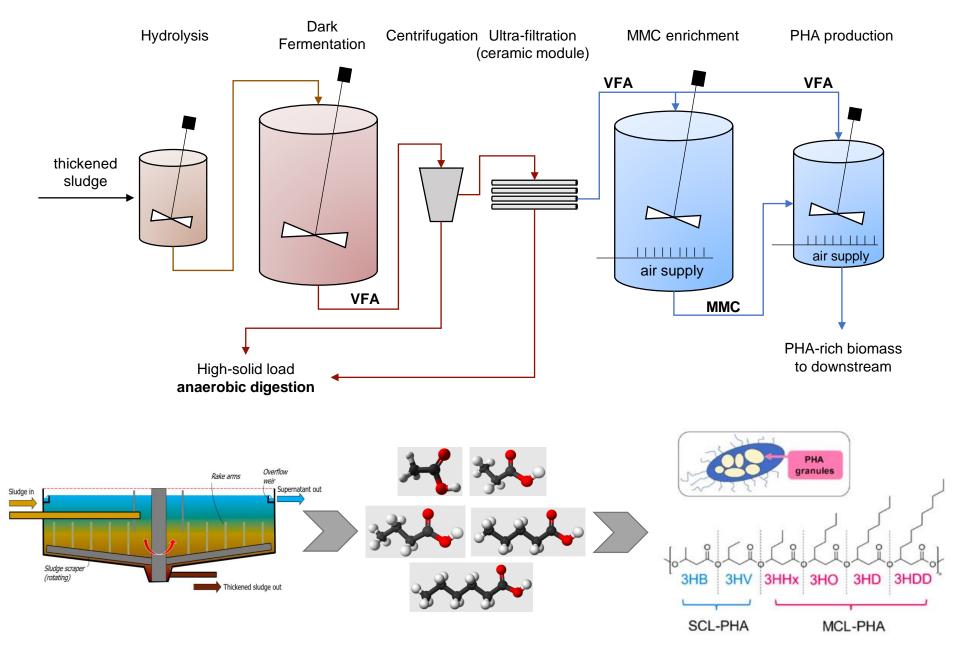

4) The pilot-scale PHA production line

5) Downstream processing and PHA characterization

- Sewage sludge is currently one of the most available waste within urban scenarios (9.0 million tons of dry solids) https://ec.europa.eu/eurostat/web/products-datasets/-/ten00030
- Disposal problems are encountered and several legislations within European Union regulate sludge management
- Italian legislation included the production of **biopolymers** as one of the alternatives for energy-materials recovery from sludge ("Disciplina della gestione dei rifiuti costituiti da fanghi di depurazione delle acque reflue - directive 86/278/CEE)

9th International Conference on Sustainable Solid Waste Management, 15-18 June 2022

The municipal wastewater treatment plant of Treviso (ATS S.r.l.)


BNR process thickened sewage sludge

Parameter	Unit	Value	
TS	g/kg	29 ± 1	
VS	g/kg	22.0 ± 0.4	
COD	g/kgTS	789 ± 66	
COD _{SOL}	mg/L	589 ± 106	
N-NH ₄ +	mg/L	163 ± 22	
P-PO ₄ ³⁻	mg/L	65 ± 9	_

Bioprocess layout

Why PHA?

Product related Pro's

Family of copolymers with tunable composition (wide portfolio of applications)

- Biodegradable commodity film
- Packaging interlayer film
- Specialty durables (such as electronics)
- Slow C-release for groundwater remediation

Production process Pro's

• Open microbial cultures process (not pure strains), to better cope with waste;

Bioplastics

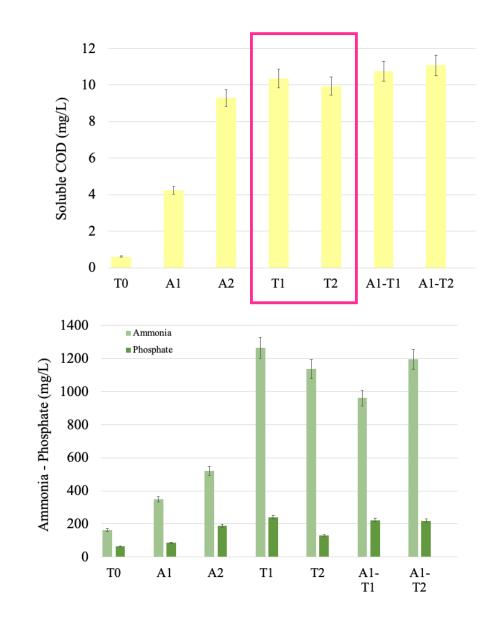
- Mostly biological process, reliable and under mild conditions.
- Easier integration with existing waste/wastewater treatment plant.

Appealing

- Produced from renewable feedstock (no food)
- Produced in biological process (no OGM)
- Biodegradable: not recycled but virgin material

GLOBAL PLASTICS MARKET 40% market share Bioplastic market expected to grow at 30% CAGR 2013-2030 Traditional plastics expected to grow 3% annually \$324B 4% market share **Bioplastics:** \$21B <1% market share \$3.75B \$455B \$540B \$803B 2013 2019 2030

> Oil-based plastics Source: Grand View Research 201 BCC Research 2014, Nexant Inc.

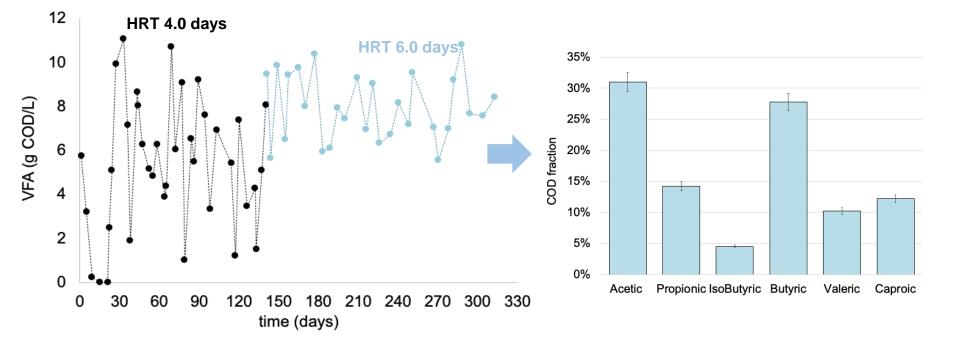

Source: Grand View Research 2014, European Bioplastics 2013, BCC Research 2014, Nexant Inc. 2012

Applications and economics High market potential As higher as more PHA cost decreases; <u>but</u> still higher value than biogas and compost Under investigation at TRL 8

Sewage sludge hydrolysis and acidogenic fermentation

Thermal (12 h)				
70°C	T1			
90°C	T2			
Alkaline (12 h)				
pH 9.0	A1			
pH 11.0	A2			
Combined (12 h)				
70°C, pH 9.0	A1-T1			
90°C, pH 9.0	A1-T2			

- Mild short-term thermal hydrolysis (70°C; 12 h) for higher solubilization
- Nutrients release (up to 770% and 360% increase for N-NH₄⁺ and P-PO₄³⁻ respectively)


Sewage sludge hydrolysis and acidogenic fermentation

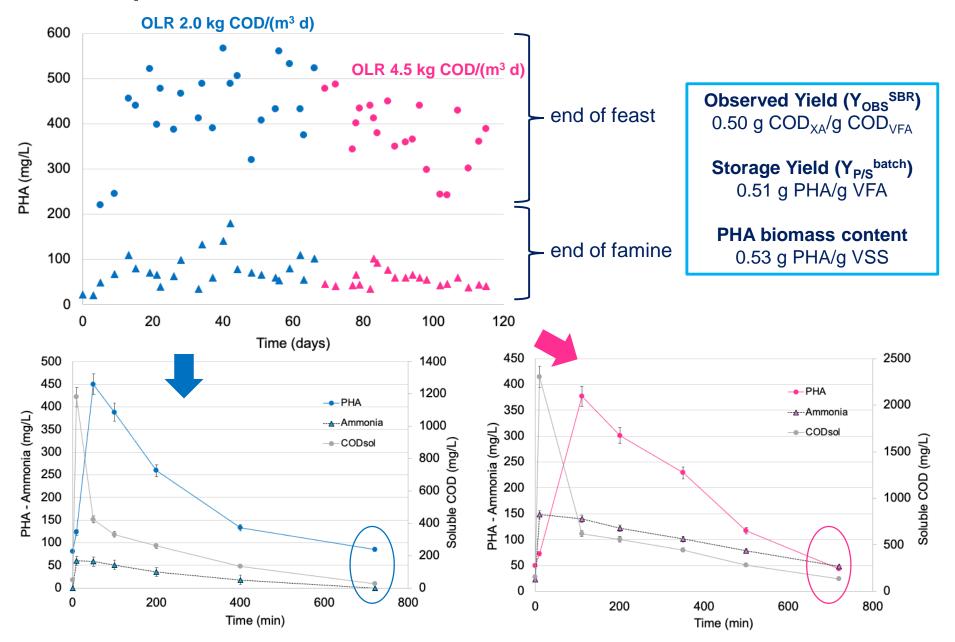
a) Thermally pre-treated sludge (70°C – 12 h)

b) Uncontrolled pH (\sim 5.5)

VFA Yield		
0.38		
g COD _{VFA} /g VS		

The pilot-scale PHA line – Biomass selection and PHA accumulation

Sequencing Batch Reactor (SBR)

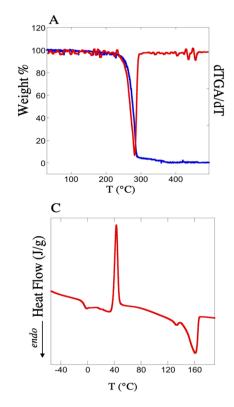

- a) Fully aerobic feast-famine
- b) Uncontrolled pH (~ 9.0)
- c) Inoculum: WAS from full scale WWTP
- d) Temperature: 22 25°C
- d) HRT: 2 days
- e) OLR: 2.0 4.5 kg COD/(m³ d)

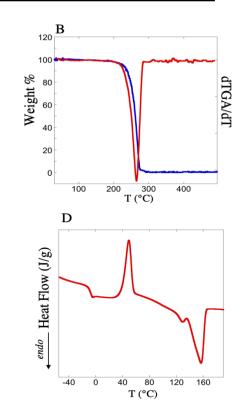
Fed-batch accumulation

- a) Fully aerobic feast
- b) Uncontrolled pH (\sim 9.0)
- c) Inoculum: SBR biomass
- e) multi-spike based on oxygen control

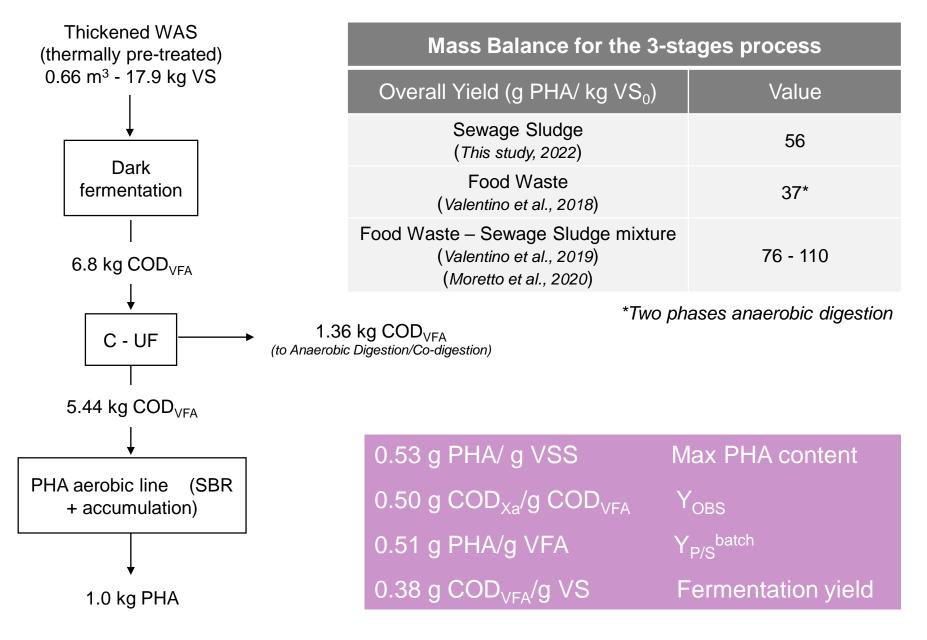
4

The pilot-scale PHA line – Biomass selection and PHA accumulation


Downstream processing and PHA characterization



NaClO


Benchmark CHCl₃

Parameter	Dried (CHCl ₃)	Humid (NaClO)
Purity (%)	101	99.8
Recovery (%)	91.5	98.3
Composition (%3HV)	14.3	13.5
T _d ^{MAX} (°C)	280	266
T _g (°C)	-5	-7
χ _c (%)	46	44
T _m (°C)	161	157
M _w (kDa)	405	396

The whole pilot-scale PHA line – Mass balance assessment

CONCLUSIONS AND PERSPECTIVES

- High stability and robustness in process performances (to be confirmed for the product in routine analysis)
- Overall PHA yield 56 g PHA/Kg VS (can be improved; the solids/liquids separation units are not optimized for a full-scale plant)
- Biogas from the overflows?
- Definition of the best scenario as income (€) per unit of TS-VS treated

UNIONE EUROPEA

REGIONE DELVENETO

Ca' Foscari University of Venice

Thank you!

francesco.valentino@unive.it