

A. García-Díaz*, S. Bueno-Rodríguez, L. Pérez-Villarejo, D. Eliche Quesada.

Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Jaén, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaén, Spain

E-mail: agdiaz@ujaen.es

Table of contents

1.Introduction 2. Experimental 3. Results 4. Conclusions

9th International Conference on Sustainable Solid Waste Management 15-18 June. Corfu 2022

6

Other use or application for industrial waste?

9th International Conference on Sustainable Solid Waste Management 15-18 June. Corfu 2022

8

<u>OBJETIVE</u>

The main objective of this study is the development of new geopolymeric materials using water treatment sludge from the oil refining industry as a raw material, in order to valorise a new type of raw material that has not been used in the production of these materials.

9th International Conference on Sustainable Solid Waste Management 15-18 June. Corfu 2022

10

////

Andalucía

There are 1.65 million hectares of olive groves

Season

4 million tonnes of olives are produced in an average olive season

Of this, around 3.7 million t/year are used for the production of olive oil

Olive oil

Table 1. Chemical composition (XRF) of raw materials

Table 1. Chemical composition (XRF) of raw materials

4. Preliminary studies for the production of geopolymers

Precursors

- 100% Oil Sludge (OS)
- 80% Oil Sludge (OS) + 20% Rice husk ash (RHA)
- 80% Oil Sludge(OS) + 20% Chamotte (CH)

Activator : commercial solution

- Solution of 100% NaOH - Solution of NaOH and Na_2SiO_3 at 50%.

<u>NaOH</u>

98 % purity

Na₂SiO₃ 29.2 % SiO₂ 8.9 % Na₂O 61.9 % H₂O

Compressive Strength

Precursors	7 days (MPa)	28 days (MPa)	
100% Oil Sludge (OS)	2.3	6.6	
80% Oil Sludge (OS) + 20% Rice husk ash (RHA)	8.8	9.6	
80% Oil Sludge(OS) + 20% Chamotte	7.1	7.8	

4. Preliminary studies for the production of geopolymers

Compressive Strength

Precursors	7 days (MPa)	28 days (MPa)	
100% Oil Sludge (OS)	2.3	6.6	
80% Oil Sludge (OS) + 20% Rice husk ash (RHA)	8.8	9.6	
80% Oil Sludge(OS) + 20% Chamotte	7.1	7.8	

Oxide content (%)	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ 0	LOI
Oil Sludge (OS)	2.11	53.55	0.710	0.759	0.311	6.29	0.358	3.70
Chamotte (CH)	63.08	12.11	4.67	8.67	1.88	0.471	3.25	3.60
Rice husk ash (RHA)	73.60	-	0.286	0.780	0.720	0.144	1.63	20.83

Table 1. Chemical composition (XRF) of raw materials

5. Manufacture of geopolymers with alternative activator

Preparation of the alternative activator

- **1**. A 10M NaOH solution is mixed with diatomites
- **2.** 6 hours in the reactor with stirring at 80°C.
- 3. Vacuum filtration

4. Alternative activator

6. Mixtures

The first mixture was 100% of OS, (which could not be produced because the mixture was cracked) then the OS was substituted at different percentages by the precursor RHA or CH: 5%, 10%, 15%, and 20% (by weight).

Mix	OS (g)	RHA (g)	Relation L/S	Mix	OS (g)	CH (g)	Relation L/S
100% OS	150	0	×	100% OS	150	0	×
5% OS	7.5	142.5	1.55	5% OS	7.5	142.5	1.45
10% OS	15	135	1.55	10% OS	15	135	1.45
15% OS	22.5	127.5	1.55	15% OS	22.5	127.5	1.45
20% OS	30	120	1.55	20% OS	30	120	1.45

Table 2. Mix proportions for assessed simples.

7. Manufacture of geopolymers with alternative activator

9th International Conference on Sustainable Solid Waste Management 15-18 June. Corfu 2022 26

9. XDR Raw materials

10. Mechanical and physical tests

- Compressive strength increases with higher percentages of oil sludge (OS).
- Higher strengths are achieved with RHA residue.
- Maximum strengths are achieved at 28 days of curing with 20% oil sludge (OS), reaching 36.6 MPa with the RHA residue, while 15.7 MPa is achieved with the CH residue.

- Compressive strength increases with higher percentages of oil sludge (OS).
- Higher strengths are achieved with RHA residue.
- Maximum strengths are achieved at 28 days of curing with 20% oil sludge (OS), reaching 36.6 MPa with the RHA residue, while 15.7 MPa is achieved with the CH residue.

- Compressive strength increases with higher percentages of oil sludge (OS).
- Higher strengths are achieved with RHA residue.
- Maximum strengths are achieved at 28 days of curing with 20% oil sludge (OS), reaching 36.6 MPa with the RHA residue, while 15.7 MPa is achieved with the CH residue.

- Compressive strength increases with higher percentages of oil sludge (OS).
- Higher strengths are achieved with RHA residue.
- Maximum strengths are achieved at 28 days of curing with 20% oil sludge (OS), reaching 36.6 MPa with the RHA residue, while 15.7 MPa is achieved with the CH residue.

- Compressive strength increases with higher percentages of oil sludge (OS).
- Higher strengths are achieved with RHA residue.
- Maximum strengths are achieved at 28 days of curing with 20% oil sludge (OS), reaching 36.6 MPa with the RHA residue, while 15.7 MPa is achieved with the CH residue.

- The test specimens with **5% and 10% oil sludge** with the **RHA** residue were **broken in water**.
- Bulk density is similar, reaching maximums with 20% oil sludge.
- The lowest water absorption is reached at 28 days of curing with 20% oil sludge.
- The lowest absorption occurs with the RHA residue.
- Higher compressive strengths produce higher densities and lower water absorption.

- The test specimens with **5% and 10% oil sludge** with the **RHA** residue were **broken in water**.
- Bulk density is similar, reaching maximums with 20% oil sludge.
- The lowest water absorption is reached at 28 days of curing with 20% oil sludge.
- The lowest absorption occurs with the RHA residue.
- Higher compressive strengths produce higher densities and lower water absorption.

- The test specimens with **5% and 10% oil sludge** with the **RHA** residue were **broken in water**.
- **Bulk density** is similar, reaching maximums with 20% oil sludge.
- The lowest water absorption is reached at 28 days of curing with 20% oil sludge.
- The lowest absorption occurs with the RHA residue.
- Higher compressive strengths produce higher densities and lower water absorption.

- The test specimens with **5% and 10% oil sludge** with the **RHA** residue were **broken in water**.
- **Bulk density** is similar, reaching maximums with 20% oil sludge.
- The lowest **water absorption** is reached at 28 days of curing with 20% oil sludge.
- The lowest absorption occurs with the RHA residue.
- Higher compressive strengths produce higher densities and lower water absorption.

- The test specimens with **5% and 10% oil sludge** with the **RHA** residue were **broken in water**.
- **Bulk density** is similar, reaching maximums with 20% oil sludge.
- The lowest water absorption is reached at 28 days of curing with 20% oil sludge.
- The lowest absorption occurs with the RHA residue.
- Higher compressive strengths produce higher densities and lower water absorption.

- The test specimens with **5% and 10% oil sludge** with the **RHA** residue were **broken in water**.
- **Bulk density** is similar, reaching maximums with 20% oil sludge.
- The lowest **water absorption** is reached at 28 days of curing with 20% oil sludge.
- The lowest absorption occurs with the RHA residue.
- Higher compressive strengths produce higher densities and lower water absorption.

- The **apparent porosity** decreases with increasing percentage of oil sludge.
- This decrease is most noticeable after 28 days of curing.
- The RHA residue test specimens with oil sludge (percentages higher than 10%) show a lower apparent porosity.
- The test specimens with the lowest apparent porosity are those made with 20% oil sludge.

- The **apparent porosity** decreases with increasing percentage of oil sludge.
- This decrease is most noticeable after 28 days of curing.
- The RHA residue test specimens with oil sludge (percentages higher than 10%) show a lower apparent porosity.
- The test specimens with the lowest apparent porosity are those made with 20% oil sludge.

- The **apparent porosity** decreases with increasing percentage of oil sludge.
- This decrease is most noticeable after 28 days of curing.
- The RHA residue test specimens with oil sludge (percentages higher than 10%) show a lower apparent porosity.
- The test specimens with the lowest apparent porosity are those made with 20% oil sludge.

- The **apparent porosity** decreases with increasing percentage of oil sludge.
- This decrease is most noticeable after 28 days of curing.
- The **RHA residue** test specimens with oil sludge (percentages higher than 10%) show a **lower apparent porosity.**
- The test specimens with the lowest apparent porosity are those made with 20% oil sludge.

- The **apparent porosity** decreases with increasing percentage of oil sludge.
- This decrease is most noticeable after 28 days of curing.
- The RHA residue test specimens with oil sludge (percentages higher than 10%) show a lower apparent porosity.
- The test specimens with the lowest apparent porosity are made with **20% oil sludge**.

Conclusions

These studies have shown that **the recovery of oil sludge is possible through the manufacture of new geopolymeric** materials, as their chemical characterisation indicates that they have a high alumina content, for this, it is necessary to mix them with other materials that have a high silica content. In this way, it is possible to recover these by-products, giving them a new use, bringing us closer to the **circular economy**.

Replacing oil sludge (OS) with RHA or CH improves the mechanical and physical properties of 100% OS. Promising physical and mechanical characteristics have been obtained.

The **alkaline activator** used **does not contain silicate** (the cause of most gepolymer contamination and its economic cost).

On the one hand, it has been proven that better mechanical and physical properties are obtained with the **RHA residue**, as long as the **presence of OS is in a percentage higher than 10%,** reaching compressive strengths of 36.6 MPa. On the other hand, although lower strengths are obtained with the **CH residue**, it can be combined with **low percentages of oil sludge** without the test specimens breaking in water.

This is a good environmental solution, as it is possible to develop an economical and sustainable material thanks to the use of industrial by-products.

Thank you!

E-mail: agdiaz@ujaen.es

ACKNOWLEDGMENTS

This work has been funded by the project Activalo2: Valorisation of Urban and Industrial Wastewater Treatment Sludge in the Manufacture of New Sustainable Alkaline Activated Materials for a Circular Economy (UJA-1380933) Proyectos de I+D+i en el marco del Programa Operativo FEDER Andalucía 2014-2020.