

DEPARTMENT OF FOOD SCIENCE AND TECHNOLOGY, SCHOOL OF AGRICULTURE, ARISTOTLE UNIVERSITY OF THESSALONIKI

ADSORPTION OF PHENOLIC COMPOUNDS FROM OLIVE MILL WASTEWATERS ON SPENT COFFEE GROUNDS: ISOTHERMS, PURE PHENOLS ADSORPTION

SOLOMAKOU N., DROSAKI A., ZAMVRAKIDIS G., GOULA A.M.

CORFU, JUNE 2022

OLIVE OIL PRODUCTION

- One of the most widely consumed oils \Box
- Economic importance for Mediterranean countries

2.4 million tons of olives/year

95% of total world ➡ production 90% is destined for olive oil production

(Solomakou and Goula, 2021)

OLIVE OIL EXTRACTION SYSTEMS

OLIVE MILL WASTEWATER

Production system	Inputs	Outputs		
Traditional pressing	Olives (1000 kg) Washing water (100-120 kg)	Oil (200 kg) Solid waste (400 kg) Wastewater (600 kg)		
Two-phase system	Olives (1000 kg) Washing water (100-120 kg)	Oil (200 kg) Solid waste (800-950 kg)		
Three-phas e system	Olives (1000 kg) Washing water (100-120 kg) Mixing water (500-1000 kg)	Oil (200 kg) Solid waste (500-600 kg) Wastewater (1000-1200		

- Liquid waste of three-phase extraction system
- Aqueous, dark, foul smelling •
- High organic content (57.2-62.1%) •
- Acidic character (pH 2.2-5.9) •
- Phenolic compounds (up to 80 g/L)

(Ochando-Pulido et al., 2013)

OMW MANAGEMENT

RECOVERY OF BIOACTIVE COMPOUNDS

Transfer of a solute from either a gas or liquid/solution to a solid. The solute is held to the surface of the solid as a result of intermolecular attraction with the solid molecules.

The best, effective, low-cost and frequently used method

ADSORPTION AFFECTING PARAMETERS

COMMERCIAL ADSORBENTS

BIOSORBENTS

 Natural materials from food industry
 Low cost & abundant
 Environmentally friendly

BIOSORBENTS

Biosorbent	Adsorbed compound	Yield (%)	Reference	Biosorbent	Adsorbed compound	Yield (%)	Reference
Pine wood char	Ph. C.d. Ar from water	3-54	Dinesh Mohan	Azolla	Phenolic compounds from OMW	-	Ena et al., 2012
Oak bark char	rk	26-98	et al., 2007	Banana peel	Phenolic compounds from OMW	60-88	Achak et al., 2009
	Cd from water	77.0-89.2	Jamil et al.,	Nutshells	Phenolic compounds from aqueous solutions	-	Goud et al., 2005
Banana peel	Pb from water	76.0 -58.3	Jamil et al., 2008	Olive pomace	Phenolic compounds from OMW	≤40%	Stasinakis et al., 2008
	Cr from leather tanning	99.1-100		Olive stone and pulp	Phenolic compounds from OMW	13.5-73%	Galiatsou et al., 2002
Banana pith	Direct red from water	55-80	Namasivayam, 1998	Pomegranate peel and orange juice by-product	Phenolic compounds from OMW	≤93.13, 89.59% respectively	Ververi and Goula 2019
	Acid brilliant blue from water	65-95		Pomegranate seeds	Phenolic compounds from OMW	≤92.8	Papaoikonomou et al., 2019
Apple pomace	Textile dye effluent	91-100	Robinson et al., 2001	Wheat bran	Phenolic compounds from OMW	≤94	Achak et al., 2014
				Wheat husk	Phenois from	91 7	Devaanshi et al., 2017

SPENT COFFEE GROUNDS (SCG)

- SCG consists a dark colored solid residue, with high moisture content, coffee aroma and high organic content
- □ 1 ton of green coffee bean → 650 kg of SCG
- □ 1 kg of soluble coffe ≥ 2 kg of wet SCG

(Murthy and Naidu, 2012 and Mata *et al.*, 2018)
 It consists mainly of carbohydrates, lipids, proteins and polyphenols

WASTE MANAGEMENT

Waste management of coffee by-products (U.S. Environmental Protection Agency (EPA, 2017).

AIM OF THE STUDY

- ✓ Holistic exploitation of SCG as a source of phenolics and as a biosorbent for the recovery of bioactive components from OMW
- ✓ Optimization of batch adsorption process
- Experimental adsorption of pure compounds in order to investigate OMW's adsorption mechanism
- Development of a novel, low cost method for the recovery of phenolic compounds from OMW and their exploitation as food additives in food industry

WASTE PREPARATION & EXTRACTION PROCESS

SCG PHENOLICS EXTRACTION

EXPERIMENTAL DESIGN-ADSORPTION

	Statistical program Minitab (Release 13)		Input of the te	factors to ested	Experimen design	tal	31 adsorption experiments
		Par	ameters	s Levels (RSM N	lethodology)		
	INVESTIGATED PARAMETERS Temperature: 20-60°C	T (°C)	рН	Liquid/Solid (r, mL/g)	Initial concentration of phenolics (C ₀ , mg/L)	Yiel	d (%) = $\frac{C_0 - C}{C_0} \times 100$
•	p H: 2-10	20	2.00	0.01	50.0	C ₀ : Ir	nitial phenolic
•	L/S ratio: 0.01-0.05	30	4.00	0.02	162.5	C	oncentration in solution
	mL/g	40	6.00	0.03	275.0	C: R	emaining phenolic
	Co: 50-500 mg/L	50	8.00	0.04	387.5	с. К С	oncentration in solution
		60	10.00	0.05	500.0	a	fter adsorption

Every experiment in 6 intervals: 0, 10, 20, 40, 60, 120 min

ADSORPTION ISOTHERMS

Langmuir Isotherm

Freundlich Isotherm

Temkin Isotherm

- c_e (g/L): unadsorbed phenolic compounds concentration in solution at equilibrium
- **q** (mg/g): amount of phenolic compounds adsorbed at equilibrium
- b (L/g): equilibrium constant or Langmuir constant related to the affinity of binding sites
- **Q**_m (mg/g): a particle limiting adsorption capacity when the surface is fully covered with phenolic compounds and assists in the comparison of adsorption performance
- **K**_F: Freundlich constant (indicates adsorption capacity of adsorbent)
- **n** : constant thatshows greatness of relationship between adsorbate and adsorbent
- B_T (kJ/mol): Freundlich constant that shows adsorption capacity of adsorbent
- · K . Tomkin jootharm parameter

ADSORPTION OF MAIN PHENOLIC COMPOUNDS

ADSORPTION OF OMW PHENOLIC COMPONENTS

ADSORPTION OF OMW PHENOLIC COMPOUNDS

OPTIMUM CONDITIONS

T=30°C, pH= 8.0, r=0.02 g/mL, C_=162.5 mg/L

ISOTHERMS

Maximum adsorption capacities (q_{max}) of phenolic compounds from OMW onto various adsorbents (Solomakou and Goula, 2021)

Adsorbent	Adsorption capacities (q _{max}) (mg/g)
Activated carbon	65
Activated carbon	340.6
Activated carbon from olive husk	349.92
Activated carbons from olive stone and pulp	91.74
Active charcoal	390
Banana peel	688.9
Combusted olive pomace	11.4
Commercial activated carbon	308
Commercial starch	32.35
Magnetic nanoparticles	79.09
Milk protein activated carbon	152.4
Olive pit–derived activated carbon	375
Orange juice by product	166.67
Polymeric resins	288
Pomegranate peel	44.44
Pomegranate seed	56.82
Resin	370
Sand	39.01
Spent Coffee Grounds	22.49
Wheat bran	487.3

ADSORPTION OF MAIN PHENOLIC COMPOUNDS

	$X_i = C_i / C_{total}$	Y _i /Y _{total}
p-coumaric	0.012	0.94
caffeic acid	0.12	0
tyrosol	0.48	0
hydroxytyrosol	0.14	0.24
oleuropein	0.12	0
gallic acid	0.12	0.26

Y_{total}=X₁*Y₁+X₂*Y₂+...+X_n*Y_n=0.012*38. 54%+0%+0%+0.14*9.81%+0%+0.12*1 0.44%= 3.08 %

CONCLUSIONS

- OMW phenolics presented maximum adsorption yield of 47.38% using SCG as biosorbent, value considered satisfactory given the omission of thermal or chemical activation
- Adsorption of model OMW phenolics presented
 similar efficiencies
- Main adsorbed phenolics appeared to be p-coumaric and gallic acid and hydroxytyrosol
- Adsorption is influenced by the presence of individual phenolic components

THANK YOU FOR YOUR ATTENTION...

