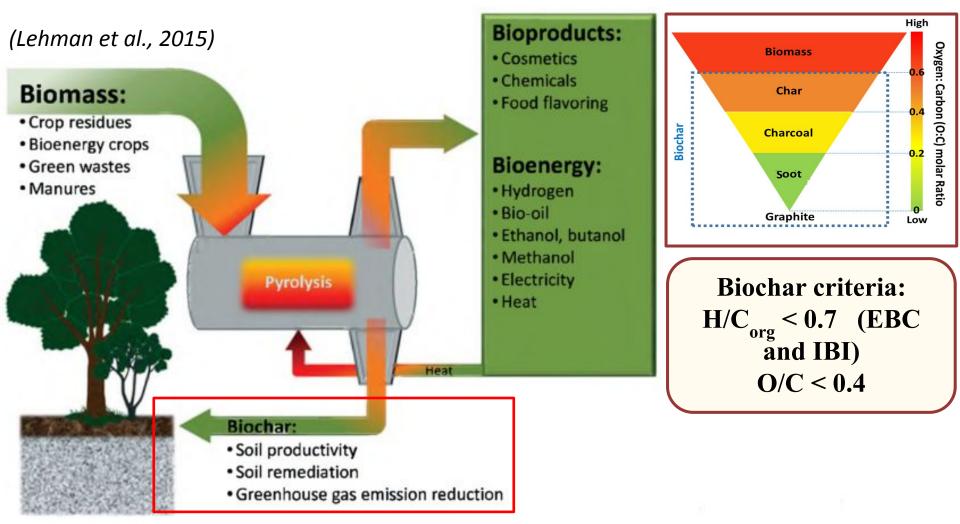


Converting Agricultural Wastes to Biochar: From Good Agricultural Waste Management Practice to High-Potential Use of Biochar as Heterogeneous Catalyst

<u>Dinh Ngoc Giao Ngo⁽¹⁾</u>, Xiang-Ying Chuang⁽¹⁾, Chin-Pao Huang⁽²⁾, Chih-Pin Huang⁽¹⁾ ⁽¹⁾ National Yang Ming Chiao Tung University, Hsinchu, Taiwan ⁽²⁾ University of Delaware, USA

June 16 - 17, 2022

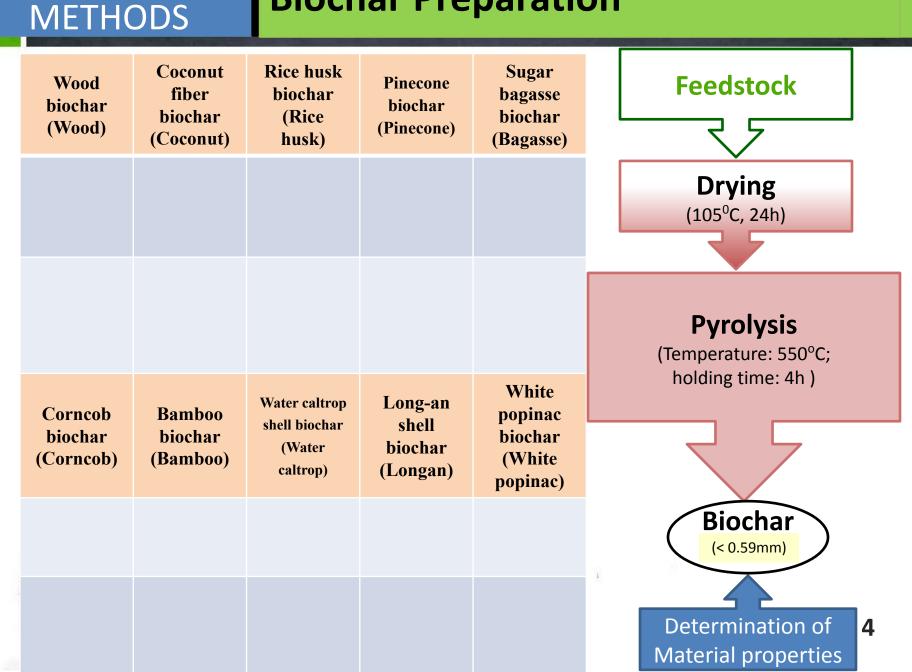

OUTLINE

Introduction

- Material & Method
- Results and Discussions
- Conclusions

Introduction

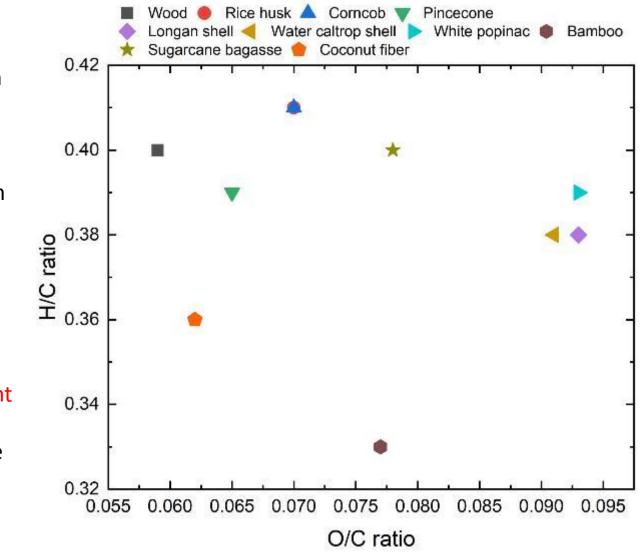
Biochars – Generation and Applications



Objective:

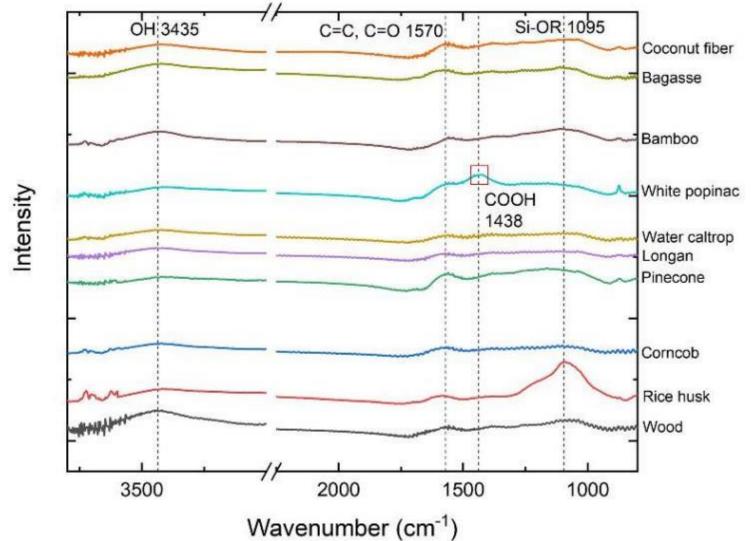
- *Recycle agricultural waste by converting to biochar*
- Determine surface acidity of biochar as an important factor of catalyst

Biochar Preparation


MATERIALS &

Results and Discussions

Characteristics of Biochars

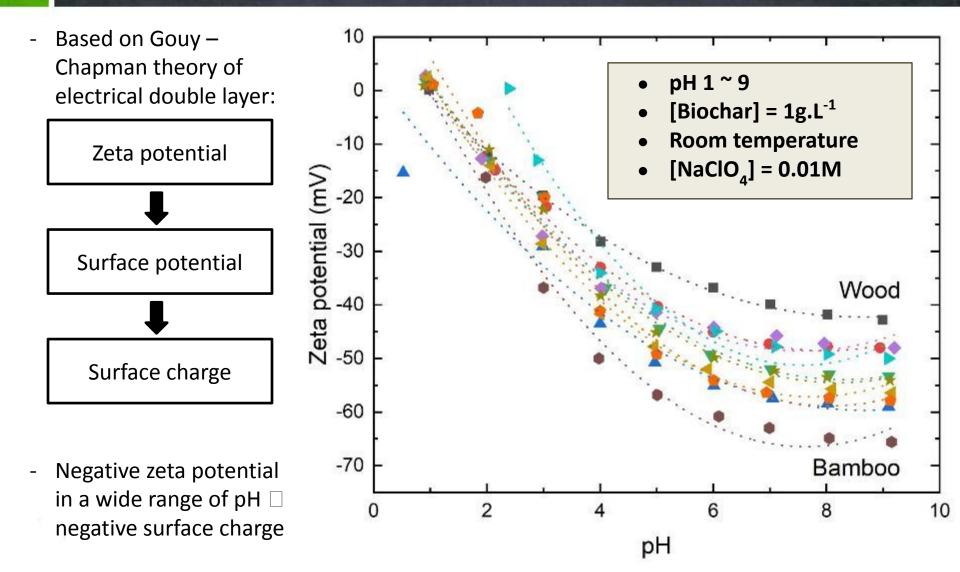

- O/C < 0.4 and H/C<0.6
- Biochar mass yield: from
 26.66 ± 4.21 to 37.35 ±
 1.90 %
- S_{BET}: 142 371 m²/g
- Pore size: 19.1 23.6 nm
- Pore volume: 0.070 –
 0.163 cm³.g⁻¹
- High content of phosphorus, alkali and alkaline earth metal content
- Good for soil amendment
- The higher heating value (HHV): 18.14 – 31.63
 MJ.kg⁻¹
- □ high energy potential

Results and Discussions

Characteristics of Biochars

FTIR spectra of the functional groups on biochars at 550°C

6


- XRD patterns:
 - The peaks at $2\theta = 20^{\circ}-30^{\circ}$ refer to the stacking structure of aromatic layers (graphite 002)
 - Sharp, non-labeled peaks in bio-char indicate miscellaneous inorganic components. (the high content of SiO₂, CaO, and MgO)

7

- TGA results:
 - Volatile matters: 15.11% 25.34%
 - Fixed carbon: 45.11% 76.58%

Results and Discussions

Characteristics of Biochars

- An important factor of catalysts
- Including: acid strength, density, and the nature (Bronsted or Lewis type)
- Biochar is submersed in aqueous medium:

$$\underline{SOH}_{2}^{+} \rightleftharpoons SOH + H^{+}, K_{a_{1}}^{int}$$
(1)
$$\underline{SOH} \rightleftharpoons SO^{-} + H^{+}, K_{a_{2}}^{int}$$
(2)

The total surface Bronsted site, S_T , is the sum of positive, neutral, and negative charge species: $S_T = \{\underline{S}OH_2^+\} + \{\underline{S}OH\} + \{\underline{S}O^-\}$ (3)

Results and Discussions

Surface acidity

Biochar	pKa2 ^{int}	рН _{гос}	pKa1 ^{int}	S _τ , C.m ⁻²
Wood	2.71	0.91	- 0.89	4.81×10 ⁻²
Rice husk	3.01	1.01	- 0.99	7.06×10 ⁻²
Corncob	2.21	0.98	- 0.25	1.25×10 ⁻¹
Pinecone	2.75	1.05	- 0.65	9.38×10 ⁻²
Longan shell	2.13	0.92	- 0.29	6.64×10 ⁻²
Water caltrop shell	2.24	1.01	- 0.22	1.07×10 ⁻¹
White popinac	2.83	1.64	0.45	7.61×10 ⁻²
Bamboo	1.84	0.91	- 0.02	1.70×10 ⁻¹
Sugarcane bagasse	2.52	1.02	- 0.48	9.55×10 ⁻²
Coconut fiber	2.54	1.24	- 0.06	1.02×10 ⁻¹

- Agricultural waste mass reduction ~
 60%: good for waste management
- Biochar:
 - Good for soil amendment
 - Negative surface charge: cation adsorption dominant
 - Promising heterogeneous catalyst or catalyst precursor substance

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Converting Agricultural Wastes to Biochar: From Good Agricultural Waste Management Practice to High-Potential Use of Biochar as Heterogeneous Catalyst

Thank you for your attention

Ngo Dinh Ngoc Giao Email: ndngiao@gmail.com