

REDUCING THE ENERGY CONSUMPTION FOR RECYCLING CEMENT: SHIFTING FROM A WET METHOD TO AN AIR-BLOWING METHOD

V. Sousa CERIS, IST-University of Lisbon

J.A. Bogas CERIS, IST-University of Lisbon

S. Real CERIS, IST-University of Lisbon

I. Meireles RISCO, University of Aveiro

OUTLINE

- 1. Introduction
- 2. Concrete waste
- 3. Materials and methods
- 4. Results and discussion
- 5. Final remarks

1. INTRODUCTION

https://doi.org/10.3390/en12132567

CORFU 2022

1. INTRODUCTION

https://gccassociation.org/gnr/

CORFU 2022

CORFU 2022

2. CONCRETE WASTE

https://intrans.iastate.edu/app/uploads/2018/09/RCA_US_usage_summary_w_cvr.pdf

CORFU 2022

CORFU 2022

Corfu, 15-18 June 2022

		,	
	Reactivation	Analogy with the dry clinker production	
	Separation	Simulation of a sand dryer use	
ELECTRICITY	Release Separation Reactivation	Analogy with the clinker production + simulation of the magnetic role and air compresso	
FUEL	Transportation	Simulation of trucks operating	
CORFU 2022			— — — — Corfu, 15-18 June 2022

CORFU 2022

Corfu, 15-18 June 2022

CORFU 2022

○ World △ EU-28 ◇ Portugal □ Secil

○World △EU-28 ◇Portugal

4. RESULTS AND DISCUSSION

STACE			PORTUGAL				
STAGE	WORLD	EUROFE	AVERAGE	SECIL			
ENERGY [MJ / t RC]							
Drying	6299.6						
Reactivation	1189.0	1255.3	1272.0	1147.4			
Electricity	964.0	713.5	1005.8	845.1			
Transportation	-	-	162.2	81.1			
Total	8452.6	8268.4	8739.6	8373.2			
EMISSIONS [kg CO_2 / t RC]							
Drying	574.2	501.8	491.2	425.0			
Reactivation	108.4	100.3	92.7	80.2			
Electricity	127.2	42.8	55.4	46.6			
Transportation	-	-	34.9	17.4			
Total	809.7	644.9	674.2	569.2			
STAGE	WORLD	EUROPE	AVERAGE	SECIL			
ENERGY [MJ / t RC]							
Drying			-				
Reactivation	1201.1	1268.1	1284.9	1159.1			
Electricity	736.3	557.2	766.2	651.3			
Transportation	-	-	163.9	82.0			
Total	1937.4	1825.3	2215.0	1892.4			
EMISSIONS [kg CO ₂ / t RC]							
Drying	-	-	-	-			
Reactivation	109.5	101.3	93.7	81.0			
Electricity	97.2	33.4	42.2	35.9			
Transportation	-	-	35.2	17.6			
Total	206.6	134.7	171.1	134.5			

TÉCNICO LISBOA

Cement production is one of the largest sources of carbon emissions worldwide and the shift to green energy will not solve the problem.

A significant proportion of the concrete waste is currently recycled in many countries, but mostly as backfilling or filling material (e.g., road construction).

The use of concrete waste as aggregates for new concrete is hindered by several mechanical and durability performance limitations.

Recycling concrete for cement production is an option aligned with the circular economy goal set by the EU.

The separation of the cement paste from the aggregates of concrete waste proofs to be viable, particularly using the air-cleaning option.

The authors wish to thank the Portuguese Foundation for Science and Technology (FCT) for funding this research under the project PTDC/ECI-COM-28308/2017 EcoHydB: Eco-efficient hydraulic binders produced from waste cement-based materials and under the unit project UIDB/ECI/04625/2020 of CERIS.

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

