

SOLVENT-BASED RECYCLING TOWARDS RECOVERY OF

TIO₂ FROM WASTE PLASTICS

CORFU 2022, 17th June

Elisabetta Carrieri, Steven De Meester

DEPARTMENT OF GREEN CHEMISTRY AND TECHNOLOGY

PLASTICS (WASTE) PRODUCTION

-

PLASTICS RECYCLING ROUTES

Feasiblity of production ** and Stability

FP

Chemical changes Structural changes (Crystallinity, Glass transition temperature Variation in Mechanical Properties

LMWC

mixed fraction in recycled plastics

Contaminants Degradation products Additives

Presence of Low Molecular Weight Compounds

MANY ADDITIVES: WHY TIO₂?

CIRCULARITY TIO₂ PLASTICS

SULFATE PROCESS Concentrated sulfuric acid Solid and acid waste 117 MJ/kgTiO₂ ** CHLORIDE PROCESS Petroleum coke chlorine gas Direct CO_2 emissions 106 MJ/kgTi O_2^{**}

*Source: Chemours **From Liao (2012), Thermodynamic resource indicators in LCA: a case study on the titania produced in Panzhihua city, southwest China.

Carbon footprint	Price	
kgCO ₂ e/kgcompound	€⁄kg (2021)	
4.90	2.6-3.2	
1.98	1.2-1.3	
2.51	~1.2	
3.68	~1.6	

Solvent

+

Polymer containing TiO₂

Dissolution

TIO2 SEPARATION

MODEL SAMPLES

WASTE SAMPLES

9

COMPOUNDS RECOVERY

Polymer

Carbon black+TiO₂

TiO₂

TiO₂ can be separated from organic compounds

CONCLUSIONS & FUTURE PROSPECTIVE

- Solvent-based recycling promising route for plastic recycling
- **Concurrent recovery** of polymer and TiO₂ is possible
- Filtration efficiency depends on: solvent, concentration, polymer, additives

- Optimization of the process required to treat real waste streams
- Assess recovered polymer properties
- Explore alternative routes for TiO₂ purification

tion	
f	Ghent Universi
¥	@ugent

Ghent University in

Thank you for your attent

Elisabetta Carrieri Doctoral student

LCPE – Laboratory for Circular Process Engineering

E elisabetta.carrieri@ugent.be Т +32 (0) 56 241217

www.lcpe.ugent.be

DEPARTMENT OF GREEN CHEMISTRY AND TECHNOLOGY

lty

PLASTICS RECYCLING RATES

*Source: Plastic Europe Market Research Group (PEMRG) and Conversio Market & Strategy GmbH. **Source: Creacycle

DISSOLUTION-PRECIPITATION PROCESS

FILTRATION CURVES

CAMPUS KORTRUK

Pure TiO₂ filtration (R-350)

Laboratory for Circular Process Engineering

	Sample	Solvent	Pressure (bar)	Turbidity reduction (%)
			1	100
		Xylene	3	100
	TiO ₂		5	100
	0.5wt ⁻ %		1	100
		Limonene	3	100
			5	100

 TiO_2 + solvent, 0.5w%, 0.1µm membrane

PURE POLYMER FILTRATIONS

FILTRATION EXPERIMENTS

PS+TiO₂ (R-350)

Sample	Solvent	Pressure (bar)	Turbidity reduction (%)	Polymer retention (%)
	Xylene	1.5	98.6	5.2
PS+TiO ₂ , 5w% solution (0.28w% TiO ₂ in PS)		3	99.5	2.6
	Limonene	1.5	97.5	1.2
		3	98.7	3.4
	Xylene	1.5	96.7	6.2
PS+TiO ₂ , 1w% solution (0.28w% TiO ₂ in PS)		3	96.8	7.7
	Limonene	1.5	96.7	1.1
		3	96.6	0.0
PS+TiO ₂ , 7w% solution (10w% TiO ₂ in PS)	Xylene	9	98.9	5.4

TiO₂ can be easily separated from pure PS by filtration

Original solution

Filtrate

FILTRATION CURVES

Styrenic polymers

□ Waste sample behaves similar to high concentration of pure PS+TiO₂ solution □ Solvent influences cake resistance □ Increasing concentration, cake resistance increases significantly

[1] https://www.researchgate.net/publication/327050728

FILTRATION EXPERIMENTS

LDPE+TiO₂ (R-350)

Sample	Solvent	Pressure (bar)	Turbidity reduction (%)	Polymer retention (%)
LDPE+TiO ₂ , 1w% solution (0.24w% TiO ₂ in LDPE)	Xylene	1.5	98.6	1.3
		3	99.5	0.9
	Limonene	1.5	97.5	0.8
		3	98.7	0.3

TiO₂ can be easily separated from pure LDPE by filtration

Original solution

Filtrate

FILTRATION EXPERIMENTS

PVC (Deceuninck)

Sample	Solvent	Pressure (bar)	Turbidity redu
PVC, 1w% (0.5w% TiO ₂ in PVC+additives)	THF	1.5	98.8
Waste PVC, 1w%		15	99.9

TiO₂ can be separated from PVC by filtration (**also** for **waste** sample*)

* = optimization needed

Original solution

Filtrate

Iction (%) **Polymer retention (%)**

76.3

Waste PVC

PVC+additives