

SEPARATION OF SHORT CARBON-CHAIN PRECURSOR MOLECULES FROM POST-CONSUMER PLASTIC PYROLYSIS OIL USING FRACTIONAL DISTILLATION

Waheed Zeb / June 17, 2022

Waheed Zeb¹, Martijn Roosen¹, Pieter Knockaert¹, Joël Hogie¹, Uros Kresovic³, Kevin Van Geem², Steven De Meester¹

¹Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-8500 Kortrijk, Belgium ²Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium <u>³Indaver N.V. Belgium, B-2800 Mechelen, Belgium</u>

Recycling (feed stock quality)

Mechanical Recycling

Effective, proven at industrial scale **Challenges:** Thermal degradation, loss of properties due to impurities, additives and residues

Roosen et al., 2020, Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling., Environ. Sci. Technol.54, 20, 13282-13293

Post consumer waste plastic

Alternative to mechanical recycling: Wide range & mix polymers can be treated

Thermochemical recycling

Downstream process

Distillation is considered as 1st logical downstream process for treatment of pyrolysis oil.

purity

Isolation of molecules by fractional distillation

Pyrolysis of polyolefins results in the

²44 % olefins are present in the pyrolysis

formation of unsaturated Alkenes

oil

industry.

However, commercial application of hydroformylation reaction is restricted to the lower carbon chain alkenes due to the solubility and mass transfer

² Kusenberg et al., 2022, A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic, waste composition Fuel Processing Technology, 227,107090.

³ Sharma et al, 2015, Aqueous phase catalytic hydroformylation reactions of alkenes. Catalysis Today, 247, 70-81.

³ Liner aldehydes are important for solvents, fine and specialty chemical

How shorter carbon chain distribution can be obtained by fractional distillation?

Preliminary Aspen simulation using bulk properties and GC analysis for process conditions & minimum carbon distribution

Final distillation temperature for each C number

8 plates ASTM, Reflux ratio=2, ASTM D2892 Pure fraction= 3 carbons

Continue..

Process conditions for distillation of each carbon cut

Fractions	Pressure (mbar)	Chiller temperature (°C)	Distillation temperature (°C)	Atmospheric equivalent temperature (°C)
C ₅ - C ₇	Atmospheric	-20	100	100
C ₈ -C ₁₀	Atmospheric	20	180	180
C ₁₁ -C ₁₃	10±2	20	106	240
C ₁₄ -C ₁₆	10±2	20	146.2	290
C ₁₇ -C ₁₉	10±2	80	180	330
C ₂₀ -C ₂₂	10±2	80	206	369

Bulk properties (Density & Viscosity)

Distillation recovery PE (%)

■ C20-C22 ■ C22+ **C17-C19** Losses

Pyrolysis oil

Distilled fractions

GCMS analysis of pyrolysis oil and fractions

UNIVERSITY

Laboratory for Circular Process Engineerin

C6 C7 **C**7

0

Continue..

UNIVERSITY CP

Laboratory for Circular Process Engineering

Overview of improvements in physical properties and contaminations

Parameters	Pyrolysis oil	C ₅ - C ₇	C ₈ -C ₁₀	C ₁₁ -C ₁₃	C ₁₄ -C ₁₆	C ₁₇ -C ₁₉	C ₂₀ -C ₂₂	C ₂₂₊
Physical property								
Density (g/cm3)	0.821	0.655	0.690	0.723	0.780	0.792	0.804	0.860
Viscosity (mm2/sec)	а	0.442	0.726	2.09	2.38	4.39	7.069	а
Trace contaminations								LOD
AI (ppm)	280	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 31.9<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 31.9<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 31.9<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 31.9<="" td=""></lod></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod 31.9<="" td=""></lod></td></lod<></td></lod<>	<lod< td=""><td><lod 31.9<="" td=""></lod></td></lod<>	<lod 31.9<="" td=""></lod>
Fe (ppm)	130	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 4.2<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 4.2<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 4.2<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 4.2<="" td=""></lod></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod 4.2<="" td=""></lod></td></lod<></td></lod<>	<lod< td=""><td><lod 4.2<="" td=""></lod></td></lod<>	<lod 4.2<="" td=""></lod>
Na (ppm)	146	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 25.2<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 25.2<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 25.2<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 25.2<="" td=""></lod></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod 25.2<="" td=""></lod></td></lod<></td></lod<>	<lod< td=""><td><lod 25.2<="" td=""></lod></td></lod<>	<lod 25.2<="" td=""></lod>
Zn (ppm)	17.7	4.2	3.6	3.1	1.8	1.6	<lod< td=""><td><lod 0.2<="" td=""></lod></td></lod<>	<lod 0.2<="" td=""></lod>
Pb (ppm)	3.8	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 0.6<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 0.6<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 0.6<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 0.6<="" td=""></lod></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod 0.6<="" td=""></lod></td></lod<></td></lod<>	<lod< td=""><td><lod 0.6<="" td=""></lod></td></lod<>	<lod 0.6<="" td=""></lod>
Mg (ppm)	7.6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 0.8<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 0.8<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 0.8<="" td=""></lod></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod 0.8<="" td=""></lod></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod 0.8<="" td=""></lod></td></lod<></td></lod<>	<lod< td=""><td><lod 0.8<="" td=""></lod></td></lod<>	<lod 0.8<="" td=""></lod>

a Wax at measurement temperature

- Properties (i:e density, viscosity) improved
- The level of contaminations decreased \bullet

Fractional distillation improves bulk properties of fractions

Fractional distillation resulted in removal of trace metal contamination

Future work

- Quantitative analysis of distilled fractions
- Further improvements for removal of trace contaminations in lower detection limits
 - Removal of acidic compounds

Thank you

Waheed Zeb

University of Gent, Belgium Email: Waheed.zeb@UGent.be

https://www.ugent.be/bw/gct/en/research/greentech/research/chemtech

GREEN CHEMISTRY AND TECHNOLOGY LABORATORY FOR CIRCULAR PROCESS ENGINEERING