CORFU2022

9th International Conference on Sustainable Solid Waste Management

15-18 JUNE 2022

Assessment of Energetic Potential from Automobile Industry Textile Wastes – Potential for RDF Production

Elisabete Silva and Isabel Brás

Introduction and Goals

Textile materials in automobiles

Seat covers, carpets, roof liners and door liners

Generates annually significant amounts of textile wastes (TW)

Circularity in automobile industry

Introduction and Goals

Refuse Derive Fuel (RDF)

Solid fuel prepared from non-hazardous waste

NP 4486:2008

Introduction and Goals

- Evaluate the energetic potential of the RDF obtained from automobile industry textile wastes (TW)
- Assess the influence of their mix with undifferentiated urban wastes (UW)
- Promote the deviation waste from landfills and the circularity of the sector

Methodology

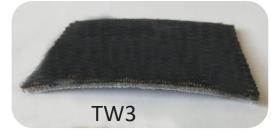
- 1. Physical characterization of samples
- 2. Production of RDF pellets
- 3. Characterization of RDF using Fuels European standards

Physical Characterization

Composition and moisture content

TW

TW:UW


Six different types of automobile seats

Source: Automobile Industry

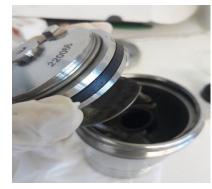
Source: Mechanical Biological Treatment of Urban Wastes

RDF Pellets Production

Milled

Pressed

Characterization using Fuels European Standards NP 4486:2008


Methodology

Calorimeter

Calorimetric bomb

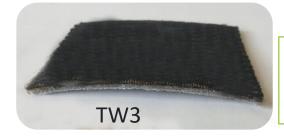
Heating Value (HV) Content (Calorimetric system)

Mohr's method

Total Chlorine (Calorimetric system – decomposition vessel)

Chlorine Quantification

Physical Characterization



- European List of Waste 040222
- Non dangereous wastes
- Textile fibers=> polyester
- Foams => organic materials based on polyol and isocyanate - polyurethane

White textile fiber, a foam and a black textile fiber

Black textile fiber

Higher foam layer

Physical Characterization

UW

59% textile, wood29% paper/cardboard6% plastic6% other energetic materials

Samples	Moisture (%)					
TW1	0.62					
TW2	0.58					
TW3	0.42					
TW4	0.23					
TW5	1.10					
TW6	0.84					
UW	3.24					

Low moisture content

RDF Pellets Characterization

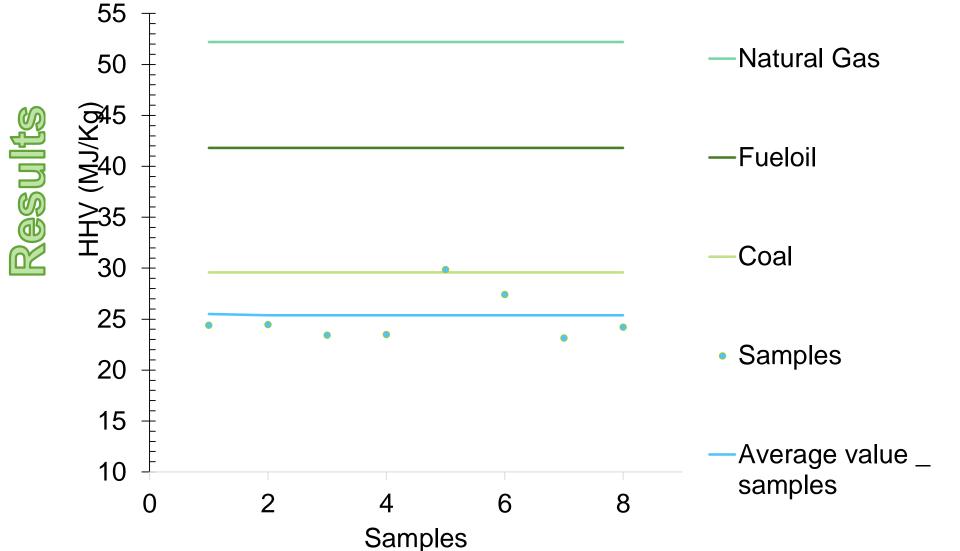
Heating Value

Ş
(M)
3

	TW1	TW 2	TW 3	TW 4	TW 5	TW 6	UW	TW:UW (1:1)
HV (MJ/kg)	24.4±0.042	24.4±0.064	23.4±0.016	23.5±0.007(29.9±0.017	27.4±0.099	23.6±0.143	24.2±0.105
(IVIJ/Kg)				/		/		

RDF pellets with higher foam layer registered highest heating values

Heating value range between 23-30 MJ/Kg


Mix TW:UW - improve slightly the HHV of UW

RDF Pellets Characterization

Heating Value

HHV is similar to coal

Results

RDF Pellets Characterization

Chlorine

	TW1	TW 2	TW 3	TW 4	TW 5	TW 6	UW	TW:UW (1:1)
Cl content (%, db)	0.41±0.07	0.31±0.01	0.29±0.05	0.07±0.001	0.17±0.03	0.98±0.01	0.78±0.07	0.52±0.03

Chlorine content < 1% => not expected to cause any significant technical or environmental problems

Technical parameter	Statistical average						Classes			
parameter	average	Offics	1	2	3	4	5			
Chlorine content (Cl)	Average	% (dry mass)	≤ 0.2	≤ 0.6	≤ 1.0	≤ 1.5	≤ 3			

Conclusion

- The textile wastes of automobile seats could be a basis for RDF production
- Their mix with rejected fractions from undifferentiated urban wastes will improve their energetic potential
- Promote the deviation of TW from landfills
- Promote the Circular Economy of sector

THANK YOU FOR YOUR ATTENTION!

ACKNOWLEGMENT

Instituto Politécnico de Viseu, the Center for Studies in Education, Technologies and Health (CI&DETS) and the Portuguese Foundation for Science and Technology (FCT), and

Organization of the 9th International Conference - CORFU 2022

