unibz Freie Free

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Forest residues valorisation for energy purposes through a small-scale CHP system

Daniele Antolini

Rohit Borooah, Eleonora Cordioli, Matteo Pecchi, Stefano Piazzi, Francesco Patuzzi, Massimiliano Renzi, Marco Baratieri

Faculty of Science and Technology, Free University of Bozen-Bolzano, Italy

9th International Conference on Sustainable Solid Waste Management 15-18 JUNE 2022

Introduction: Energy from woody residues management

Feedstock: forest residues

- They can be effectively used as additional energy resource and,
 - ✓ avoid safety problems in the forest, such as the spreading of tree diseases, pests, and forest fires
 - \checkmark provide an economic advantage of operating the plant
 - ✓ a strategy to increase the local clean energy production.
 - ✓ a buffer material in the seasons in which the maintenance activities are not performed - can feed gasifier throughout the year regardless of the seasonal changes

reduction of operational costs of plants and valorisation of a resource which is currently unused

Sieve test analysis

After sieving both feedstock (**FR** and **WC**), three different fractions were obtained:

- 1. 8 mm feedstock collected on sieve of aperture size 8 mm (range 16 mm 8 mm)
- 2. 3.15 mm feedstock collected on sieve of aperture size 3.15 mm (range 8 mm 3.15 mm)
- **3. Dust** feedstock collected on the bottom plate (i.e., < 3.15 mm)

CHP system setup: open-top gasifier + dual fuel engine

small-scale CHP system – dual fuel engine + gasifier

Open-top gasifier behavior

Open-top gasifier behavior 1st air unburned biomass control level 2nd air 公司公司 char combustion non reactive char 人民の主任人 REAL PLACE

Open-top gasifier behavior 1st air unburned biomass control level 2nd air

CORFU-2022, 15-18 June 2022

9

Open-top gasifier behavior 1st air unburned biomass control level gasification reactive char 2nd air char combustion reactive char char discharge non reactive char 5% 的复数 REAL FORMATION

CORFU-2022, 15-18 June 2022

Open-top gasifier behavior

cycle of fuel charge and char discharge

Freie Universität Bozen Libera Università di Bolzano **Free University of Bolzano**

9th International Conference on **Sustainable Solid Waste Management**

CHP system mass balance

CORFU-2022, 15-18 June 2022

Methods

Data acquisition and mass balances

 $\dot{m}_{biomass_wet} + \dot{m}_{air} = \dot{m}_{pgas_dry} + \dot{m}_{pgas_H_20} + \dot{m}_{char_dry}$ $\dot{m}_{biomass_wet} \cdot [N]_{biomass_wet} + \dot{m}_{air} \cdot [N]_{air} = \dot{m}_{Pgas_dry} \cdot [N]_{Pgas_dry}$ $\dot{m}_{biomass_wet} \cdot [C]_{biomass_wet} = \dot{m}_{Pgas_dry} \cdot [C]_{Pgas_dry} + \dot{m}_{char_dry} \cdot [C]_{char_dry}$ CA

OVERALL MASS BALANCE

NITROGEN BALANCE

CARBON BALANCE

Specific Gas Energy

$$SGE\left[\frac{MJ}{kg}\right] = \frac{\dot{m}_{pgas_dry} \cdot LHV_{pg}}{\dot{m}_{biomass}}$$

Cold Gas Efficiency

$$CGE \ [\%] = \frac{\dot{m}_{pgas_dry} \cdot LHV_{pgas}}{\dot{m}_{biomass} \cdot LHV_{biomass}}$$

CORFU-2022, 15-18 June 2022

Feedstock	C (%)	H (%)	N (%)	S (%)	O* (%)	Moisture (%)	Ash (%)	LHV (MJ/kg)
100WC	48.21	6.17	0.41	0.22	40.87	3.84	0.28	17.69
75WC25FR	49.09	6.26	0.52	0.13	39.56	4.00	0.44	17.68
50WC50FR	48.59	6.13	0.41	0.19	39.89	4.17	0.62	17.60
25WC75FR	50.08	6.20	0.47	0.15	36.41	♦ 5.45	↓ 1.24	17.09

unibz

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

9th International Conference on Sustainable Solid Waste Management

High variability was observed in the ER for feedstocks with higher FR

- The non-uniform particle size and non-homogeneity of different components
- The influence of the valve position to the pression drop of the gasifier gas line

CORFU-2022, 15-18 June 2022

Daniele Antolini

19

CORFU-2022, 15-18 June 2022

Daniele Antolini

Setup – Engine

- 1. Paguro 4000 engine-generator set
- 2. Siemens Sitrans MAG 1100 flow sensor
- 3. K-type thermocouples in cooling water line
- 4. MRU Vario Plus exhaust gas analyzer
- 5. Grimm Mini-WRAS 1371PM analyzer particel counter (diameter 10 nm 35 μm)
- 6. Load cell
- 7. Fuel tank
- 8. PG-Air mixing chamber
- 9. PG control valve with orifice meter,
- 10. HT PQA820 power meter
- 11. Electrical loads
- 12. Data acquisition in PC.

Methods

Data acquisition and mass balances

 $\dot{m}_{Pgas} + \dot{m}_{diesel} + \dot{m}_{air} = \dot{m}_{exh_dry} + \dot{m}_{exh_H_2O}$ $\dot{m}_{Pgas} \cdot [N]_{Pgas} + \dot{m}_{air} \cdot [N]_{air} = \dot{m}_{exh_dry} \cdot [N]_{exh_dry}$ $\dot{m}_{Pgas} \cdot [C]_{Pgas} = \dot{m}_{exh_dry} \cdot [C]_{exh_dry}$

Electrical efficiency

efficiency [%] = $\frac{Power_{electrical}}{\dot{m}_{pgas} \cdot LHV_{pgas} + \dot{m}_{diesel} \cdot LHV_{pgas}}$

Thermal Efficiency

efficiency [%] =
$$\frac{\dot{m}_{water} \cdot Cp_{water} \cdot \Delta T}{\dot{m}_{pgas} \cdot LHV_{pgas} + \dot{m}_{diesel} \cdot LHV_{pgas}}$$

CARBON BALANCE

Diesel Substitution Rate

$$DSR = \frac{\dot{m}_D - \dot{m}_d}{\dot{m}_D}$$

$$\dot{m}_D = \dot{m}_{diesel}$$
 (only diesel)

 $\dot{m_d} = \dot{m}_{diesel}$ (in dual fuel mode)

CORFU-2022, 15-18 June 2022

CORFU-2022, 15-18 June 2022

CORFU-2022, 15-18 June 2022

Daniele Antolini

CORFU-2022, 15-18 June 2022

UnibzFreie Universität BozenLibera Università di BolzanoFree University of Bolzano

9th International Conference on Sustainable Solid Waste Management

CORFU-2022, 15-18 June 2022

Unibz Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

9th International Conference on Sustainable Solid Waste Management

CORFU-2022, 15-18 June 2022

Conclusions

- A small-scale open-top gasifier coupled with an engine-generator set was operated with various mixtures of forest residues (FR) and standard wood chips (WC).
- **Different plant operation conditions** were observed for different FR fractions. Lager ER deviations were observed with increasing fraction of FR in the feedstock mixture (75% of FR).
- The variation of ER involved some differences in performance indicators such as LHV of PG, Ychar, SGE, CGE, etc.
- This variability was also evident in the engine output. However, some trends were observed: an increase in terms of CO emission and a decrease for NOx and PM in relation to the growth of DSR.
- In conclusion, biomass residues from forests could be valorized by using them as inexpensive feedstock in CHP processes, thereby reducing plants' operational costs.
- However, due to the inherent variability in their physical and chemical composition predictability and reproducibility of results might be a challenge.

Acknowledgments

This work has been supported by the project BIO-CHEAPER (BIOmasses Circular Holistic Economy APproach to EneRgy equipments) funded by the Ministero dell'Università e della Ricerca (MIUR) in the framework of Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017, nr. 20175TXJER.

The infrastructure has been provided by the Free University of Bozen-Bolzano, Italy.

Ministero dell'Istruzione Ministero dell'Università e della Ricerca

BIOmasses **C**ircular **H**olistic Economy **AP**proach to Ene**R**gy equipments

Free University of Bozen-Bolzano, Italy unibz

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Thank you for your attention

Daniele.Antolini@unibz.it

Come & visit us!
bnb.groups.unibz.it

