

Organic Fraction of Municipal Solid Waste Treatment with Black Soldier Fly Larvae: A Life Cycle Assessment Perspective

Dr. Navarro Ferronato Department of Theoretical and Applied Sciences University of Insubria, Varese (Italy)

Riccardo Paoli², Francesco Romagnoli², Gianluca Tettamanti^{3,4}, Daniele Bruno³, Vincenzo Torretta¹

¹ Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, 21100, Varese, Italy

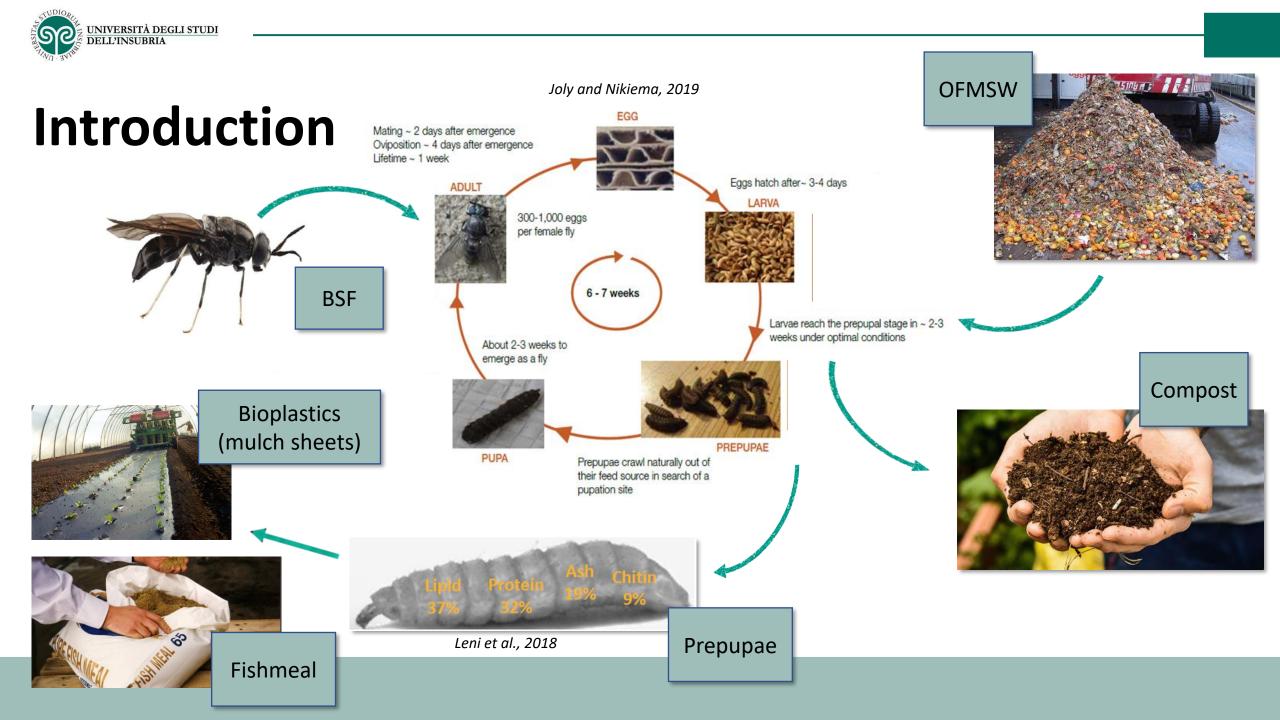
² Institute of Energy Systems and Environment, **Riga Technical University**, Azenes iela 12/1, LV-1048, Riga, Latvia

³ Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy

⁴ Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Via Università 100, 80055, Portici (NA), Italy

Outline

Introduction


The RICH project

Methods

LCA Results

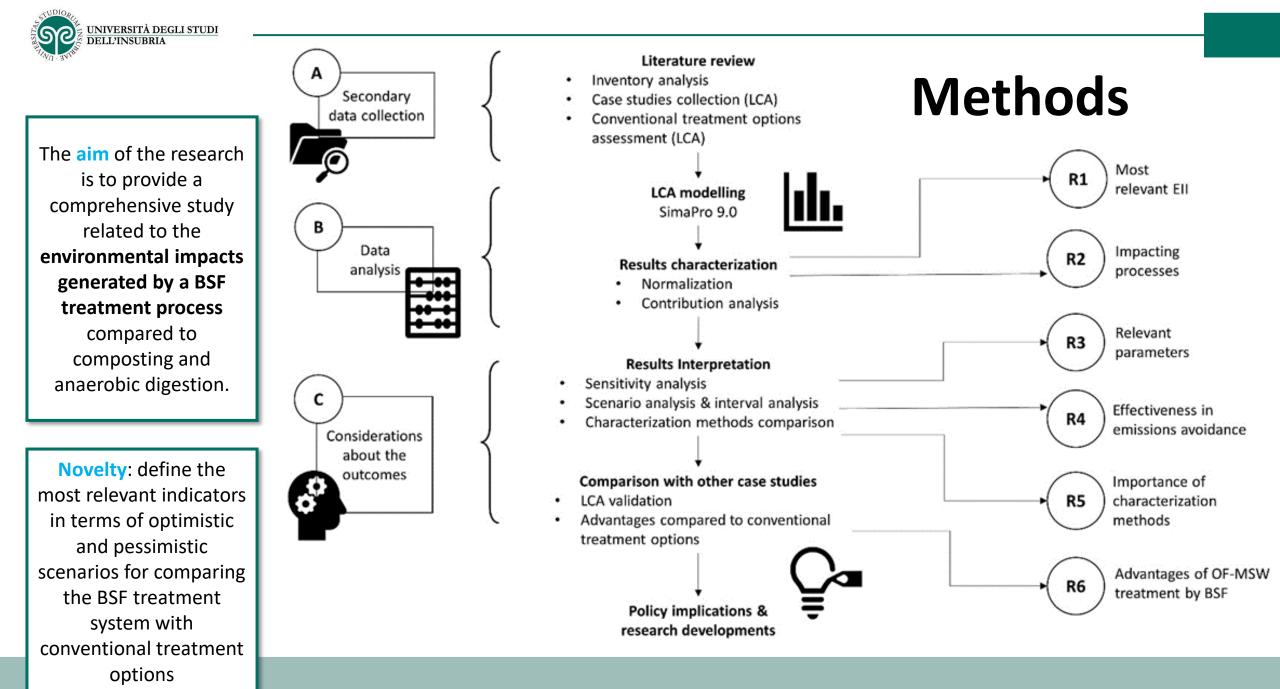
Concluding remarks

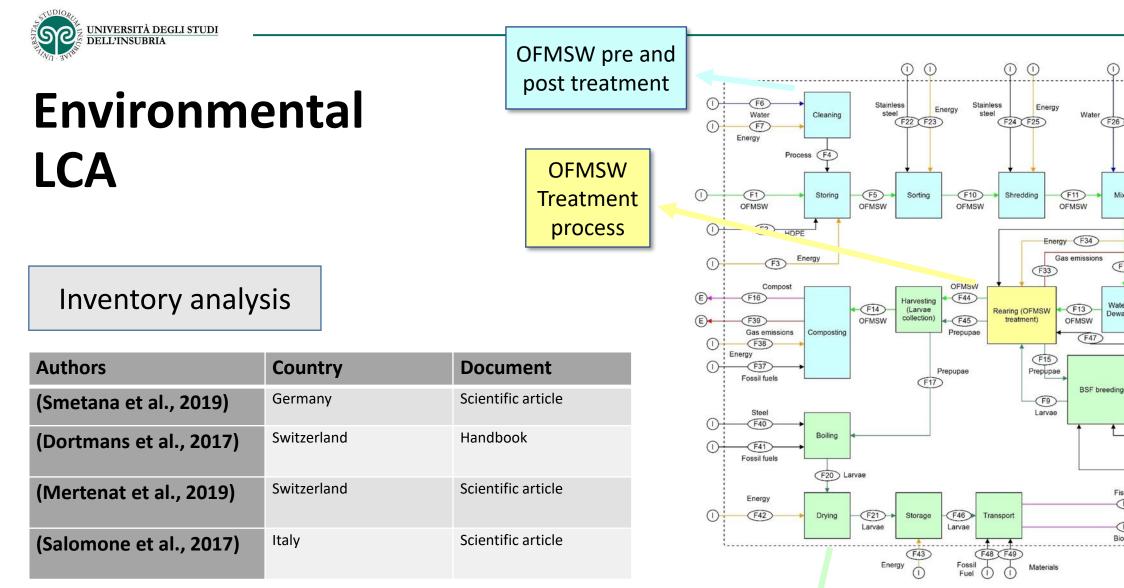
h

The RICH project

OBJECTIVES:

- Development of a bioconversion system of OFMSW through an innovative approach by BSF larvae
- Development of an environmentally friendly process for the extraction of proteins and lipids from BSF prepupae
- Development of an innovative and reliable process to **produce protein-based materials** (bioplastics)


Turning Rubbish Into biobased materials: a sustainable CHain for the full valorization of organic waste.



PARTNERS:

- University of Insubria (Varese, Italy): Department of Biotechnology and Life Sciences, Department of Theoretical and Applied Sciences, Department of Economy.
- University of Milan (Italy): Department of Biosciences
- Polytechnic of Milan (Italy): Department of Chemistry, Materials and Chemical Engineering
- Deutsche Institut für Kautschuktechnologie (Germany)

BSF breeding and

post treatment

System boundaries (prepupae post treatment non included)

0 0

(F26 (F27)

Mixing

(F12)

Watering /

Dewatering

OFMSW

Energy

Materials (wood, steel, plstics)

Energy

(F28)

(F50)

Water

Chicken feed

(F8)

BSF larvae

F32

Energy

F31)

Plastics F30

Fishmeal

F18

(F19

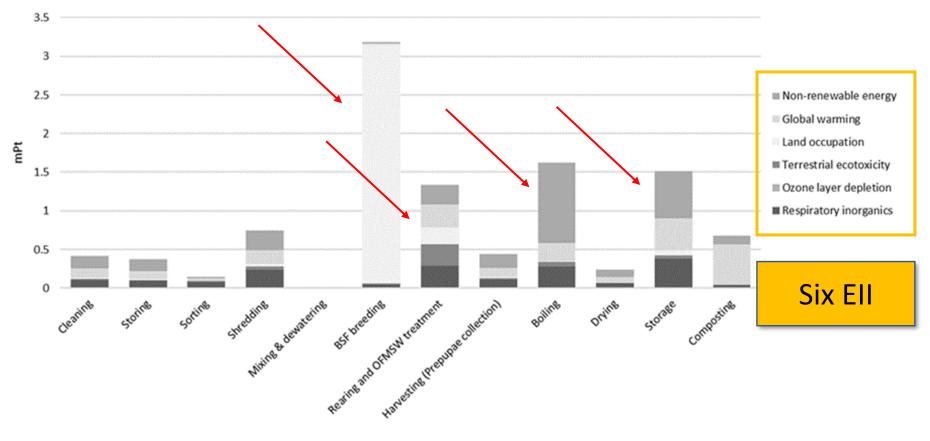
Bioplstics

Stainless steel

(F36

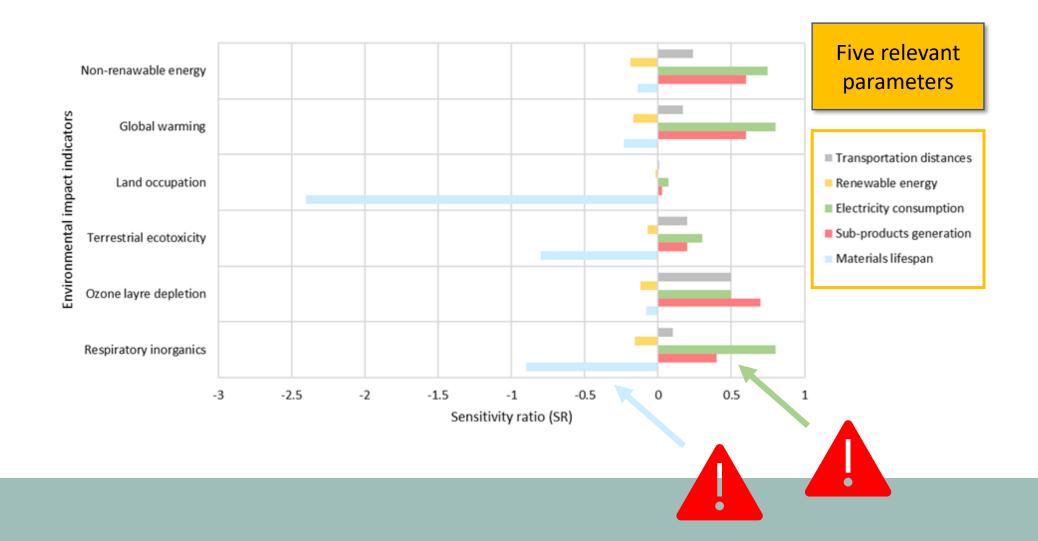
0

Œ


 \bigcirc

•(E)

(E)


Results - Most relevant EII and impacting processes

Processes

Results - Relevant parameters to be assessed

Results - Effectiveness in emissions avoidance

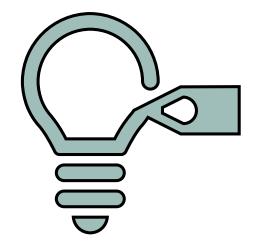
Avoiding fishmeal production and transportation

Avoiding plastics and bioplastics production

Scenarios	Respiratory inorganics	Ozone layer depletion	Terrestrial ecotoxicity	Land occupation	Global warming	Non- renewable energy	Scenarios	Respiratory inorganics	Ozone layer depletion	Terrestrial ecotoxicity	Land occupation	Global warming	Non- renewable energy
	kg PM2.5-eq	kg CFC-11-eq	kg TEG soil	m ² org. arable	kg CO ₂ -eq	MJ primary		kg PM2.5-	kg CFC-11-		m ² org.		
S0	0.0174	3.50E-06	879	44	20.62	439		eq eq	-	kg TEG soil	arable	kg CO ₂ -eq	MJ primary
							S0	0.0174	3.50E-06	879	44	20.62	439
Fishmeal avoided 0 km	0.0137	7.63E-07	738	43.7	17.9	202	Avoidance of						
	(-21.3%)	(-78.2%)	(-16.0%)	(-0.7%)	(-13.2%)	(-54.0%)	bioplastics	0.0171	3.45E-06	875	41.3	20.4	432
Fishmeal avoided 1,000	-0.006	-5.11E-06	-1117	38.8	-15.5	-331	production	(-1.7%)	(-1.4%)	(-0.5%)	(-6.1%)	(-1.1%)	(-1.6%)
km (transportation	(-134.4%)	(-246%)	(-227.1%)	(-11.8%)	(-175.2%)	(-175.4%)							
trucks)							Avoidance of	0.0174	3.49E-06	872	43.9	20.5	438
Fishmeal avoided	-0.0144	-8.12E-07	454	43	8.43	64.6	recycled	-	(-0.3%)	(-0.8%)	(-0.2%)	(-0.6%)	(-0.2%)
10,000 km	(-182.8%)	(-123.2%)	(-48.4%)	(-2.3%)	(-59.1%)	(-85.3%)	polyethylene						
(ships transportation)							production						

Advantages of OFMSW treatment with BSF larvae compared to conventional options

	Unit	Sanitary landfill	Compositing	Anaerobic digestion	BSF		
	Onit	Sanitary lanuthi	Composting	Anaerobic digestion	Min	Max	
Global warming	kg CO ₂₋ eq	1182	60	30	-32.39	41.42	
Ozone layer depletion	kg CFC-11eq	304E-05	7.75E-06	5.03E-06	-6.7E-06	5.5E-06	
Non-renewable energy	MJ	1543	6874	982	-797	629.24	



Concluding remarks

- BSF treatment environmental impacts are always lower than final disposal and composting, while it seems to have better performances than AD, although not in the worst process conditions.
- If renewable energy is employed and low electricity consumption is achieved, BSF larvae can be a good alternative to support sustainable OFMSW treatment.

Primary data about proteins extraction and bioplastics production are required giving to the LCA more relevant and reliable information.

Produce high values bioplastics: importance in avoiding virgin materials use Effective impacts related to the chemical processes (primary data assessment)

Thank you!

Dr. Navarro Ferronato Department of Theoretical and Applied Sciences University of Insubria, Varese (Italy)

navarro.ferronato@uninsubria.it

This research has been supported by: The CARIPLO Foundation Grant number 2020-0900