

MICROSTRUCTURAL CHARACTERISATION OF PASTES PRODUCED WITH RECYCLED CEMENT

J. Alexandre Bogas¹, Ana Carriço¹, António Tenza-Abril¹

¹ CERIS, Department of Civil Engineering, Architecture and Georresources (DECivil), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, Portugal;

June 2022

Target (GCCA)

CDW reuse
Save natural resources
↓ 25% CO₂ (2030)
Net zero concrete (2050)

Objectives:

Microstructural characterization of recycled cement pastes

 Comparison with reference Portland Cement pastes

 Porous structure and phase development since early age (8 hours to 28 days)

Experimental Program

Materials:

- Origin Cement Paste:
 - w/b=0.55; CEM I 42,5R; (>90 days)
 - f_{cm,28d} = 41 MPa
- <u>Recycled Cement:</u>
 - Grinding and milling (d<250 μm)
 - Thermoactivated (700 °C)

CORFU 2022

High water

demand

Recycled Cement:

- Porous nature 48% accessible porosity (MIP)
- BET SA ≅150 000 cm²/g $(\cong 8-9 \times OPC)$
- Free lime $\approx 14\%$
- RC particle size 1 order magn. higher

CORFU 2022

Paste compositions:

- **RC** paste (w/b=0.72) (normal consistency)
- Reference **OPC** pastes:
 - CEM_0.72 Equal w/b (0.72)
 - CEM_0.31 Similar workability (w/b=0.31)

100% RC

Six 160x40x40 mm specimens – wet cured – 8 hours to 28 days

Test Methods:

- Mechanical strength
- Microstructural analysis

Flexural and compressive strength (1,3,7,28 days)

CORFU 2022

Results and discussion

REPÚBLICA PORTUGUESA

XRD analysis – Non-treated RC (NTRC) vs Treatead RC

• α'_HC₂S; CaO; CaCO₃ RC O - Ettringite - CaCO₃ Gypsum * - C-S-H ▼ - Ca(OH)₂ + - Larnite ∇ - CaO Brownmillerite NTRC 10 15 5 20 25 30 35 40 45 50 55 60 65 70 2θ(CuKα)(°)

Thermogravimetry (TG/DTG) – Non-treated RC

- Increase of carbonation products 6.2% (vs OPC)
- Well-hydrated cement waste (78% α_H , W_B=18%)

REPÚBLICA PORTUGUESA

U 2022

Thermogravimetry (TG/DTG) – Hydrated RC – 8h to 28d

• \uparrow W_B and W_{B,C-SH} with age \Rightarrow High rehydration capacity

TÉCNICO LISBOA FCT Fundação para a Ciência e a Tecnologia

• \uparrow W_B and α_{H} in RC (up to 3 days) \Rightarrow higher initial reactivity (surface area, solubility)

Thermogravimetry (TG/DTG) – Hydrated RC – 8h to 28d

- Lower amount of AFt phases
- AFm phases since early age (8 h)
- Less CH of lower binding energy (part carbonated)

ORFU 2022

Isothermal calorimetry (IC) – Hydrated RC – 8h to 28d

Fundação para a Ciência e a Tecnologia

• Heat release up to $3h \Rightarrow \cong 3 \times OPC$

FCT

TÉCNICO

 Rehydration of free lime and AFm phases (no shoulder from AFm)

	Setting time	
Pastes	Start	End
RC	280	417
CEM I 42.5	170	315

• Slower formation of external CSH (delayed induction period)

REPÚBLICA PORTUGUESA

SEM analysis

Equal w/b - 8 hours

First CSH in a loose porous structure, poorly consolidated No AFt phases

Agglomeration of high surface area RC Platted-like products (AFm/CH) No significant formation of CSH

SEM analysis

Equal w/b - 14 hours

Significant increase of hydration products (AFt, CH, CSH) Poorly bonded particles

Still low amount of CSH Essentially AFm and CH Ascending acceleration stage

SEM analysis

Equal w/b - 24 hours

Still highly porous structure, with coarse AFt and CH – similar to 14 hours

Formation of CSH was significant microstructure was slightly denser in RC than in OPC

SEM analysis

Equal w/b - 24 hours

RC – Two-phase microstructure

Lower w/b \Rightarrow refining the microstructure

SEM analysis

Equal w/b - 3 days

SEM analysis

Pastes of equal workability and lower w/b - 8/24 hours

Denser microstructure Fast hydration (CSH / CH) Much higher porosity

Equal workability - 3 days

REPÚBLICA PORTUGUESA

Dense microstructure Low w/b Dense outer microstructure outer w/b is also low

CORFU 2022

Structural model

Lower outer w/b in RC and CEM_0.31 paste

Simple estimate \Rightarrow 30% water absorption and 15% free lime in RC \Rightarrow the external w/b would be about 0.37, close to 0.31

Backscattered (BSC) quantitative analysis

Distinguish of different hydration products and porosity
Evolution of CH, CSH, porosity, anhydrous grains overtime

Distinguished by different grey level

BSC quantitative analysis (low accuracy for < 1-10 μ m)

• Progressive hydration of RC over time

TÉCNICO FCT

- Lower coarse porosity in RC than in OPC up to 3 days
- Volume of hydration products higher in OPC at 28 days

N₂ adsorption tests

- Higher volume of small pores in RC (<50 nm)
 - Higher surface area in RC

Porous nature of RC \Rightarrow More refined porosity

Mechanical strength

- For equal w/b
 - \Rightarrow similar strength at 3 days (reactivity of α_H -C₂S; particle proximity)
 - \Rightarrow 43% **lower at 1 day** (less CSH; particle size and agglomeration)
 - \Rightarrow 32% lower at 28 days

(\downarrow volume of outer hydration products; weaker particles of RC)

Conclusions

Conclusions:

RC showed high rehydration capacity, with the same types of

hydration products, but AFm phases since early age (8 hours)

The reactivity of RC was higher between 1 and 3 days

RC paste is characterized by a dual structure, where porous RC is surrounded by an outer hydrated matrix

Showing lower outer w/b and a more refined microstructure

RC 28 days strength was about 70% of that of OPC paste

RC has a high potential to be used as an alternative hydraulic binder or supplementary cementitious material

Thank you for your attention

