# Utilizing waste-derived aluminosilicate for water treatment: Pyrolysis and adsorption modelling

Contributors: Shifa Zuhara\*, Hamish Mackey, Gordon McKay

9th International Conference on Sustainable Solid Waste Management



Corfu, Greece 16<sup>th</sup> June 2022

\*Presenter, Ph.D. Scholar in Sustainable Environment



# **Presentation Outline**

- Introduction
- Experimental Work
- Results & Discussion
- Conclusion
- References

# Introduction



## E-Wastes: Printed Circuit Boards (PCBs)

- PCBs: platform upon which microelectronic components such as semiconductor chips and capacitors are mounted
- Is a mixture of woven glass reinforced resin and multiple kinds of metal
- Difficult to recycle because of their special physical and chemical characteristics
- Waste electrical and electronic equipment: 30 50 million tons/year
- Annual growth rate: 3–5%



# **Back Street Recycling**



Environmental Issues

# Disadvantages of traditional treatment methods



- Landfill gas (CO<sub>2</sub>, CH<sub>4</sub>)
- Leachate (Heavy metals)



- Toxic emission
- *Incineration* (Furan, NO<sub>x</sub>, SO<sub>x</sub>, dioxin, heavy metals)
  - Toxic Ash (Heavy metals)
  - Particulates



# Partial E-Waste Recycling

#### Pyrometallurgy Recycling Techniques

- Pyrolysis
- Vacuum pyrolysis

#### Hydrometallurgy Recycling Techniques

- Acid leaching
- Complex leaching

#### Biometallurgy Recycling Techniques

• Similar to hydrometallurgy recycling techniques







#### **Green E-waste Handling**



#### Non-metallic part (NMP) of PCB

- Copper stream  $\rightarrow$  smelting furnaces to recover pure high value copper
- Upto 70% of the non-metallic materials  $\rightarrow$  landfills or zero value-added filler in cement

Mainly consist of thermoset resins and glass fibers  $\rightarrow$  cannot be re-melted or reformed because of their network structure

#### Total PCB Union Ltd., Hong Kong

# Zero CO<sup>2</sup> Emission & Zero Discharge Model: RPCB 1500 Copper Concentrate



Non-Metal Powde



Calcium aluminosilicate chain is broken down into smaller units → temperature & KOH

Pyrolytic chemical activation of PCB at high temperatures in an inert atmosphere

> Aluminosilicate resin containing free Ca<sup>2+</sup> & K<sup>+</sup> available for ion exchange

This research focuses on the removal of zinc using the resin

RESEARCH

OBJECTIVE

Increases economic value of the waste as the resin can be used for water treatment

Isotherm modelling & optimization studies

timization studies

#### Analysis of non-metallic powder (NMP)











NMP



#### Experimental Work

- Impregnation of NMP by KOH
- Carbon removal and activation at 250°C for 3 hrs in a furnace → A-NMP
- Washed and then dried at 110°C

# **Chemical Activation of NMP**





#### **SEM Image**



NMP



A-NMP (amorphous, porous)



2928 for A-NMP: Carbon burn off
1013-1036 for A-NMP: More siloxane groups on the surface and inside pores
3200-3600 for A-NMP: OH Stretching & formation of silanol group

## Surface composition of NMP and A-NMP determined by XPS



### Principal elements in NMF and A-NMF determined by XRF

| Element | Elemental Composition of<br>NMF (mol%) | Elemental Composition of<br>A-NMF (mol%) |   |
|---------|----------------------------------------|------------------------------------------|---|
| Al      | 11.4                                   | 10.3                                     |   |
| Si      | 50.6                                   | 43.4                                     |   |
| Ca      | 29.7                                   | 26.6                                     |   |
| Ti      | 0.10                                   | 0.10                                     |   |
| Fe      | 0.10                                   | 0.15                                     |   |
| Cu      | 0.60                                   | 0.30                                     |   |
| Br      | 2.5                                    | 0.00                                     |   |
| Ba      | 0.30                                   | 0.20                                     |   |
| K       | 0.00                                   | 16.9                                     | - |
|         |                                        |                                          |   |

#### Equilibrium Isotherm for Zinc on A-NMF

- 50 mg A-NMF added to 0.5mM to 5mM zinc concentrations (50mL)
- Shaken at 120 rpm at 25°C until equilibrium <sup>e</sup> was reached
- Filtered and pH-adjusted samples were analyzed by ICP-AES



|                        |                             |                                                | 1                                    |
|------------------------|-----------------------------|------------------------------------------------|--------------------------------------|
|                        | Source of adsorbent         | Type of adsorbent                              | Zinc Adsorption<br>capacity (mmol/g) |
|                        | Plant                       | Wood-based granular activated carbon           | 0.058                                |
|                        | Seaweed                     | Alginate extraction byproduct                  | 0.78                                 |
| Zinc Adsorption        | Plant                       | Hardwood leaf                                  | 0.098                                |
| Capacity<br>Comparison | Plant                       | Date stones                                    | 0.14                                 |
| Studies                | Plant                       | Water Hyacinth<br>root                         | 0.48                                 |
|                        | Synthetic                   | Polyamidoamine dendrimers-<br>decorated silica | 0.42                                 |
|                        | Synthetic                   | Magnetic chlorapatite nanoparticles            | 1.18                                 |
|                        | PCB E-waste<br>(This study) | lon exchange resin                             | 2.00                                 |

|   | Isotherm Model                   | Equation                                                                                           |
|---|----------------------------------|----------------------------------------------------------------------------------------------------|
|   | Langmuir                         | $q_e = \frac{K_L C_e}{1 + a_L C_e}$                                                                |
|   | Freundlich                       | $q_e = a_F C_e^{b_F}$                                                                              |
|   | Redlich-Peterson (RP)            | $q_e = \frac{K_R  C_e}{1 + a_R C_e^{b_R}}$                                                         |
| S | SIPS/Langmuir-Freundlich<br>(LF) | $q_e = \frac{K_{LF} C_e^{n_{LF}}}{1 + a_{LF} C_e^{n_{LF}}}$                                        |
|   | Toth                             | $Q_e = \frac{Q_m C_e}{[K_T + (C_e^n)]^{\frac{1}{n}}}$                                              |
|   | Temkin                           | $q_e = BlnA_T, + BlnC_e$                                                                           |
|   | Dubinin-Radushkevich (DR)        | $q_e = \left(\frac{Q_m \exp = \left(RT \ln \left(1 + \frac{1}{C_e}\right)\right)^2}{-2E^2}\right)$ |

Model Isotherms Tested



#### Designing a two-stage reactor based on SIPS model



*S: amount of adsorbent q: metal ion concentration C: concentration of solutions L: amount of solution* 

#### Mass comparison between removal efficiencies



#### Adsorbent mass comparison for single and two-stage reactors



- For a two-stage reactor system for 99% zinc removal the mass required is much lower
- At lower concentrations- 1mmol/L zinc concentrations → 0.1 g for single stage Vs <0.05 g for designed two-stage adsorber system
- Two small reactors can save the amount of adsorbent needed, especially for low-capacity adsorbents

# Conclusion



- Global E-waste pollution is on the rise and sustainable management is important
- Contains high amount of calcium aluminosilicate and is an excellent candidate for water treatment applications
- Pores are created by alkali cleavage by KOH of the silicate rings and burning off carbon (20 wt.%)

- Zinc removal efficiency is 2.01 mmol/g- better than several other reported adsorbents
- Designed two-stage adsorbent reactor is more economical, especially for lower concentrations of zinc
- Future upscaling and pilot-scale studies to be conducted



#### References

- Bouhamed, F., Elouear, Z., Bouzid, J., Ouddane, B. (2016). Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environ. Sci. Pollut. Res. 23(16), 15801-15806.
- Cardoso, S. L., Costa, C. S. D., da Silva, M. G. C., Vieira, M. G. A. (2020). Insight into zinc (II) biosorption on alginate extraction residue: Kinetics, isotherm and thermodynamics. J. Environ. Chem. Eng. 8(3), 103629.
- Elkhalifa, S., Al-Ansari, T., Mackey, H. R., & McKay, G. (2019). Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 144(September 2018), 310–320.
- Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10.
- Hadi, P., Ning, C., Ouyang, W., Xu, M., Lin, C. S., & McKay, G. (2015). Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor. *Waste Management*, *35*, 236-246.
- Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18(2), 393–415.
- Keochaiyom, B., Wan, J., Zeng, G., Huang, D., Xue, W., Hu, L., Cheng, M. (2017). Synthesis and application of magnetic chlorapatite nanoparticles for zinc (II), cadmium (II) and lead (II) removal from water solutions. J. Coll. Interf. Sci. 505, 824-835.
- Loganathan, P., Shim, W. G., Sounthararajah, D. P., Kalaruban, M., Nur, T., Vigneswaran, S. (2018). Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon. Environ. Sci. Pollut. Res. 25(17), 16664-16675.
- Shen, Z., Jin, F., Wang, F., McMillan, O., Al-Tabbaa, A. (2015). Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Biores. Technol.
   193,
   553-556.
   Bouhamed, F., Elouear, Z., Bouzid, J., Ouddane, B. (2016). Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environ. Sci. Pollut. Res. 23(16), 15801-15806.
- Wu, K., Luan, L., Xing, J., Ma, S., Xue, Z., Xu, W., Niu, Y. (2020). Removal of Zn (II) and Co (II) from N, N-dimethylformamide by polyamidoamine dendrimers decorated silica: Performance and mechanism. J. Molec. Liq. 113073.



Acknowledgment: The authors acknowledge the support given by Hamad Bin Khalifa University (HBKU) and Qatar Foundation (QF) for conducting this research.