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Introduction



E-Wastes: Printed Circuit Boards (PCBs)

• PCBs: platform upon which microelectronic components such as 

semiconductor chips and capacitors are mounted

• Is a mixture of woven glass reinforced resin and multiple kinds of 

metal

• Difficult to  recycle because of their special physical and chemical 

characteristics 

• Waste electrical and electronic equipment: 30 – 50 million 

tons/year

• Annual growth rate: 3-5% 



Back Street Recycling

Manual sorting

Acid wash/open incineration 
to recover the metals

Environmental 
Issues



Disadvantages of traditional treatment methods 

Landfilling 

Incineration

• Landfill gas (CO2, CH4)
• Leachate (Heavy metals)

• Toxic emission
• (Furan, NOx, SOx, dioxin, heavy metals)
• Toxic Ash (Heavy metals)
• Particulates



Pyrometallurgy Recycling Techniques
• Pyrolysis
• Vacuum pyrolysis

Hydrometallurgy Recycling Techniques
• Acid leaching
• Complex leaching

Biometallurgy Recycling Techniques 
• Similar to hydrometallurgy recycling techniques

Partial E-Waste Recycling



Hammermill

High-Speed Vortex 
Separation70%

30%

PCB E-waste

Corona Electrostatic Separation

Green E-waste Handling



Total PCB Union Ltd., Hong Kong

Non-metallic part (NMP) of PCB

• Copper stream  smelting furnaces to recover pure high 
value copper

• Upto 70% of the non-metallic materials  landfills or 
zero value-added filler in cement

Mainly consist of thermoset resins and glass fibers  cannot 
be re-melted or reformed because of their network 

structure



RESEARCH 
OBJECTIVE

Pyrolytic chemical 
activation of PCB at 

high temperatures in 
an inert atmosphere

Aluminosilicate resin 
containing free Ca2+ & K+ 

available for ion 
exchange

Calcium 
aluminosilicate chain 

is broken down into 
smaller units  

temperature & KOH

Isotherm modelling & 
optimization studies

This research 
focuses on the 

removal of zinc 
using the resin

Increases economic 
value of the waste as 
the resin can be used 
for water treatment
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Analysis of non-metallic powder (NMP)

Elemental 
Analysis

Element wt%

C 20

N 0.45

S 0.2

H 0.5

NMP 

SEM Imaging



• Impregnation of NMP by KOH

• Carbon removal and activation at 
250oC for 3 hrs in a furnace A-NMP

• Washed and then dried at 110oC

Experimental Work



Chemical Activation of NMP
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Sample ID SBET (m2/g) Vmicro (cc/g) Vmeso (cc/g) Vtotal (cc/g) p/p0

NMP 0.9 0.006 0 0.006 0.98

A-NMP 222 0.004 0.738 0.742 0.98

Surface 
Area 

Analysis

A-NMP
(amorphous, porous)

SEM Image

NMP 



FTIR spectra 
before & after 

activation 

2928 for A-NMP:  Carbon burn off
1013-1036 for A-NMP:   More siloxane groups on the surface and inside pores
3200-3600 for A-NMP:   OH Stretching & formation of silanol group



Surface composition of NMP and A-NMP determined by XPS

Element
Binding 

Energy (eV)
% mass

NMF A-NMF

Si (2p) 102.5 11.12 23.65

C (1s) 285 48.06 1.79

K (2p) 293.8 0 12.02

Ca (2p) 347.4 1.14 8.03

O (1s) 531.7 30.12 48.26

Al (2s) 119.2 4.01 5.35



Principal elements in NMF and A-NMF determined by XRF

Element Elemental Composition of 
NMF (mol%)

Elemental Composition of 

A-NMF (mol%)
Al 11.4 10.3

Si 50.6 43.4

Ca 29.7 26.6

Ti 0.10 0.10

Fe 0.10 0.15

Cu 0.60 0.30

Br 2.5 0.00

Ba 0.30 0.20

K 0.00 16.9



Equilibrium Isotherm for Zinc on A-NMF 

• 50 mg A-NMF added to 0.5mM to 5mM zinc

concentrations (50mL)

• Shaken at 120 rpm at 25˚C until equilibrium

was reached

• Filtered and pH-adjusted samples were

analyzed by ICP-AES



Source of adsorbent Type of adsorbent
Zinc Adsorption 

capacity (mmol/g)

Plant
Wood-based granular activated 

carbon
0.058

Seaweed Alginate extraction byproduct 0.78

Plant Hardwood leaf 0.098

Plant Date stones 0.14

Plant
Water Hyacinth 

root
0.48

Synthetic
Polyamidoamine dendrimers-

decorated silica
0.42

Synthetic Magnetic chlorapatite nanoparticles 1.18

PCB E-waste
(This study)

Ion exchange resin 2.00

Zinc Adsorption 
Capacity 

Comparison 
Studies



Isotherm Model Equation
Langmuir 

𝑞𝑞𝑒𝑒 =
𝐾𝐾𝐿𝐿 𝐶𝐶𝑒𝑒

1 + 𝑎𝑎𝐿𝐿𝐶𝐶𝑒𝑒
Freundlich 

𝑞𝑞𝑒𝑒 = 𝑎𝑎𝐹𝐹𝐶𝐶𝑒𝑒
𝑏𝑏𝐹𝐹

Redlich–Peterson (RP) 
𝑞𝑞𝑒𝑒 =

𝐾𝐾𝑅𝑅 𝐶𝐶𝑒𝑒
1 + 𝑎𝑎𝑅𝑅𝐶𝐶𝑒𝑒

𝑏𝑏𝑅𝑅

SIPS/ Langmuir-Freundlich 
(LF) 𝑞𝑞𝑒𝑒 =

𝐾𝐾𝐿𝐿𝐿𝐿𝐶𝐶𝑒𝑒
𝑛𝑛𝐿𝐿𝐿𝐿

1 + 𝑎𝑎𝐿𝐿𝐿𝐿𝐶𝐶𝑒𝑒
𝑛𝑛𝐿𝐿𝐿𝐿

Toth 𝑄𝑄𝑒𝑒 =
𝑄𝑄𝑚𝑚𝐶𝐶𝑒𝑒

𝐾𝐾𝑇𝑇 + 𝐶𝐶𝑒𝑒𝑛𝑛
1
𝑛𝑛

Temkin 𝑞𝑞𝑒𝑒 = 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇 , + 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒

Dubinin-Radushkevich (DR)

𝑞𝑞𝑒𝑒 =
𝑄𝑄𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1 + �1

𝐶𝐶𝑒𝑒

2

−2𝐸𝐸2

Model 
Isotherms 

Tested



Isotherm Modelling

SIPS model 
SSE: 0.10



Designing a two-stage reactor based on SIPS model 

S: amount of adsorbent
q: metal ion concentration
C:  concentration of solutions
L: amount of solution



Mass comparison between removal efficiencies 



• For a two-stage reactor system for 99% zinc
removal the mass required is much lower

• At lower concentrations- 1mmol/L zinc
concentrations  0.1 g for single stage Vs <0.05 g
for designed two-stage adsorber system

• Two small reactors can save the amount of
adsorbent needed, especially for low-capacity
adsorbents

Adsorbent mass comparison for single and two-stage reactors 



Conclusion

• Global E-waste pollution is on the rise and sustainable management is 
important

• Contains high amount of calcium aluminosilicate and is an excellent 
candidate for water treatment applications

• Pores are created by alkali cleavage by KOH of the silicate rings and 
burning off carbon (20 wt.%)

• Zinc removal efficiency is 2.01 mmol/g- better than several other 
reported adsorbents

• Designed two-stage adsorbent reactor is more economical, 
especially for lower concentrations of zinc

• Future upscaling and pilot-scale studies to be conducted
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