

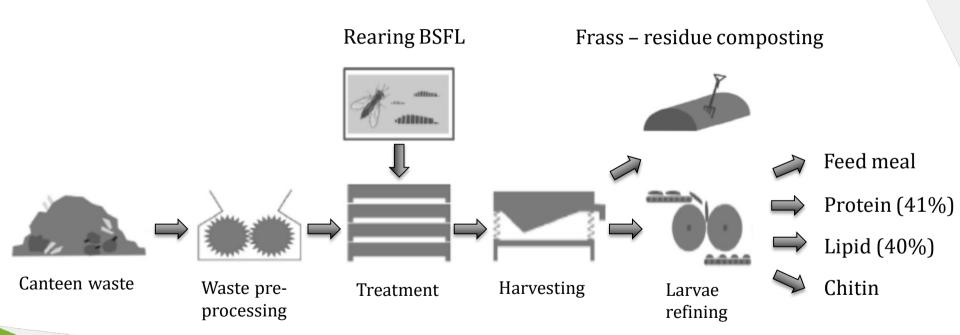
Lucian Miron
Process & Product Development Scientist

Zetadec, Wageningen, The Netherlands

Extraction, characterization and functional properties of proteins from black soldier fly larvae (BSFL) reared on canteen waste

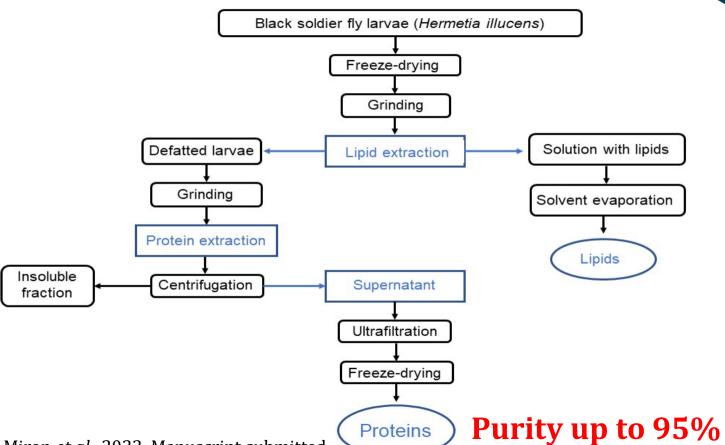
9th International Conference on Sustainable Solid Waste Management, 15-18 June 2022

Content



- Rearing of insects (BSFL) on canteen waste
- Issues
- Protein extraction
- Amino acid profile
- Techno-functionalities of BSFL proteins
- Application of BSFL in dog food
- Conclusions

Rearing of insects (BSFL) on organic waste


Issues

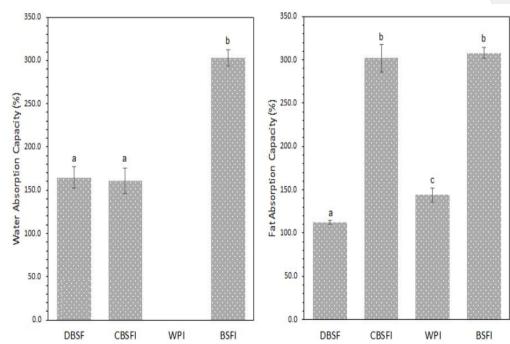
- The use of insect meal as feed and food is limited by the legislation in Europe
 - Novel Food according to the guidelines for market authorization of products by EFSA
 - Documents of safety demonstration of certain insect
- **Consumer acceptance** the largest barrier to the adoption of insects as viable sources of protein in many Western countries

Protein extraction

Amino acid profile

Amino acid	Amount in BSFI (mg/g protein)	Human requirements (mg/g protein)
His	27.0 ± 3.55	15
Ile	46.6 ± 5.11	30
Leu	70.4 ± 7.7	59
Lys	73.2 ± 8.1	45
Met	24.8 ± 3.2	22
Cys	5.70 ± 0.7	-
Tyr	73.8 ± 8.1	38
Phe	53.9 ± 5.9	-
Val	51.3 ± 5.6	39
Trp	14 ± 0	6
Thr	39.9 ± 4.4	23
Ser	32.9 ± 0.1	-
Asx	116.0 ± 11.6	-
Glx	101.0 ± 11.1	-
Gly	39.0 ± 4.3	-
Ala	38.1 ± 4.2	-
Pro	35.1 ± 3.9	-

$$EAAI = \sqrt[9]{\frac{g \text{ of essential amino acid in 1 } g \text{ of BSFI}}{g \text{ of essential amino acid needed in 1 } g \text{ of protein}}} *$$

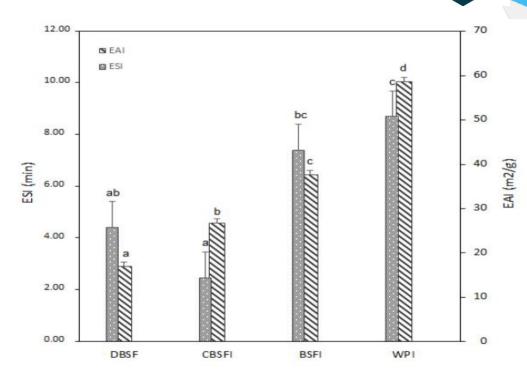

(etc. for the other 8 essential amino acids)

Other proteins:

- *T. molitor*, EAAI=1.60
- *Z. morio,* EAAI=1.66
- Pea, EAAI = 1.37
- Bean, EAAI = 1.34
- Soybean, EAAI= 1.56 1.85
- Casein, EAAI=1.93

> Techno -functionalities of BSFL proteins

	Techno-functions	al Food system
High solubility	Solubility	Beverages
	Emulsification	Sausages, sauces, soups, cakes, salad dressings, ice-cream, yogurt
	Foaming	Whipped toppings, desserts, cakes
	Gelation	Meats, curds, cheese, meat analogues
Intermediate solubility	Cohesions-adhesio	n Meats, sausages, baked goods, pasta
	Elasticity	Meats, bakery, cheese
	Viscosity	Soups, gravies, low-fat products
Low solubility	Fat adsorption	Meats, sausages, cakes, bakery
	Flavour binding	Meat analogues, bakery
	Hydrophobic films	Food coatings

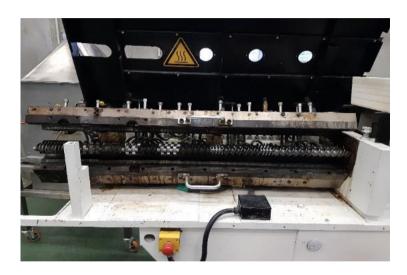


- Defatted larvae (DBSF),
- Commerical BSF protein isolate (CBSFI)
- Organic waste BSF protein isolate (BSFI) and
- Whey protein isolate (WPI)

> Techno -functionalities of BSFL proteins

Solubility	Beverages	
Emulsification	Sausages, sauces, soups, cakes, salad dressings, ice-cream, yogurt	
Foaming	Whipped toppings, desserts, cakes	
Gelation	Meats, curds, cheese, meat analogues	
Cohesions-adhesion	Meats, sausages, baked goods, pasta	
Elasticity	Meats, bakery, cheese	
Viscosity	Soups, gravies, low-fat products	
Fat adsorption	Meats, sausages, cakes, bakery	
Flavour binding	Meat analogues, bakery	
Hydrophobic films	Food coatings	
	Gelation Cohesions-adhesion Elasticity Viscosity Fat adsorption Flavour binding	

- Defatted larvae (DBSF),
- Commerical BSF protein isolate (CBSFI)
- Organic waste BSF protein isolate (BSFI)
- Whey protein isolate (WPI)



■ Dog food formulation used for extrusion

Raw material	Composition without insect (%)	Composition with insect (%)
Rice flower	50	50
Poultry meal	19	15
Greaves's meal	8	5
Brewer's yeast	15	15
Rapeseed oil	5	
Bone meal	1	
Premix	2	2
BSFL		13

☐ Extrusion trial

APV Baker extruder used for producing dog food kibbles

PARAMETER	SETTING 1	SETTING 2
FEEDER (RPM) (OR%)	20	20
SCREW (%)	40	40
KNIFE (RPM)	100	100
WATER PUMP STAND (L/H)	12	12
DIE OPENING	2x3.5	2x3.5
TEMP ZONE 1 (°C)	30	30
TEMP ZONE 2 (°C)	40	40
TEMP ZONE 3 (°C)	50	50
TEMP ZONE 4 (°C)	60	60
TEMP ZONE 5 (°C)	80	100
TEMP ZONE 6 (°C)	105	125
TEMP ZONE 7 (°C)	120	140
TEMP ZONE 8 (°C)	125	145
TEMP ZONE 9 (°C)	130	150

■ Dog food kibbles

Conventional (130 °C)

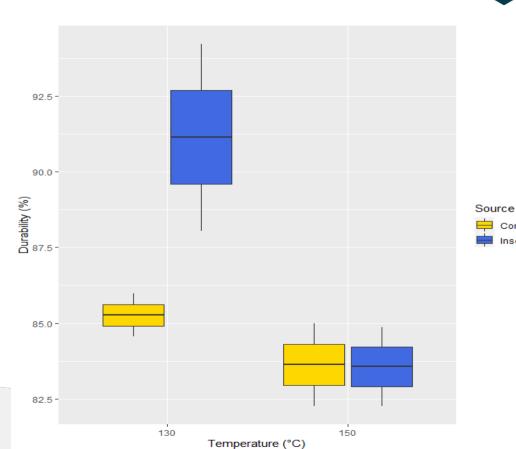
With insects (130 °C)

Conventional (150 °C)

With insects (150 °C)

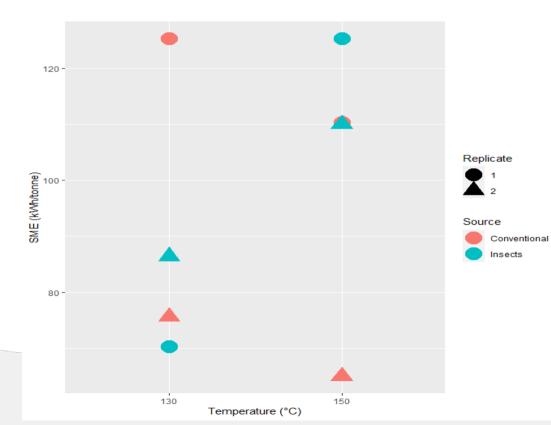
SCAL BUR

Texture


ZETADEC

Conventional

☐ Pellet Durability Index (PDI)



SCAL BUR

ZETADEC

■ Energy consumption – SME (kWh/tonne)

Conclusions

- Insects can be a sustainable source of proteins
- Legislation and consumer acceptance are the main issues for scaling up insect production
- BSFL proteins show good fat binding capacity and emulsification activity
- BSFL can successfully replace conventional sources of proteins and oils in dog food kibbles.
- BSFL does not have any influence on the texture and energy consumption (KWh/tonne) of dog food kibbles.
 - BSFL has a positive influence on the durability of dog food kibbles when processes at 130 °C.

THANK YOU!

Lucian Miron lucian.miron@zetadec.com www.zetadec.com **Zetadec, The Netherlands**

(E) @SCALIBUR_H2020

(in) SCALIBUR project

www.scalibur.eu

