Valorisation of Purple Non-Sulphur Bacteria Biomass from Anaerobic Treatment of Fuel Synthesis Process Wastewater to Aquaculture Feed

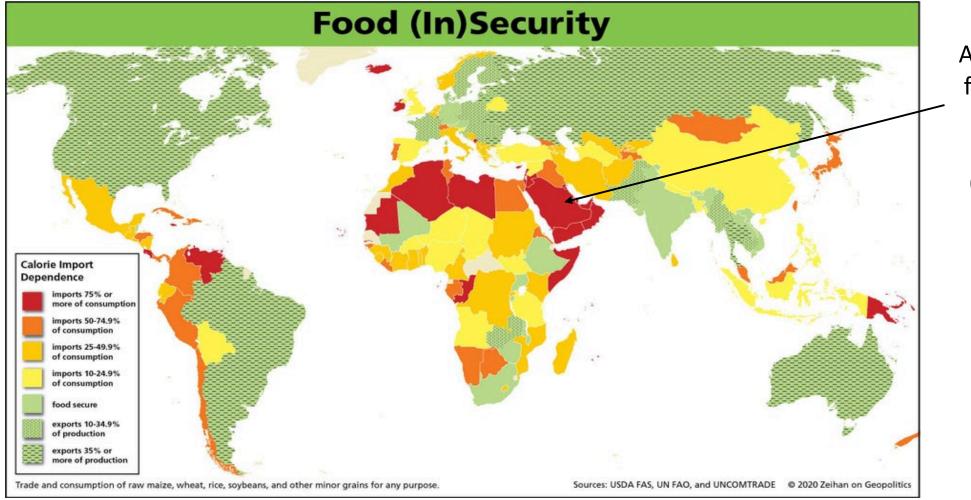
O.Z. Wada^{1*}, U. Onwusogh², A.S. Vincent³, H.R. Mackey¹

¹Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
²Qatar Shell Research and Technology Centre, Doha, Qatar
³Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar

CORFU 2022 June 16, 2022

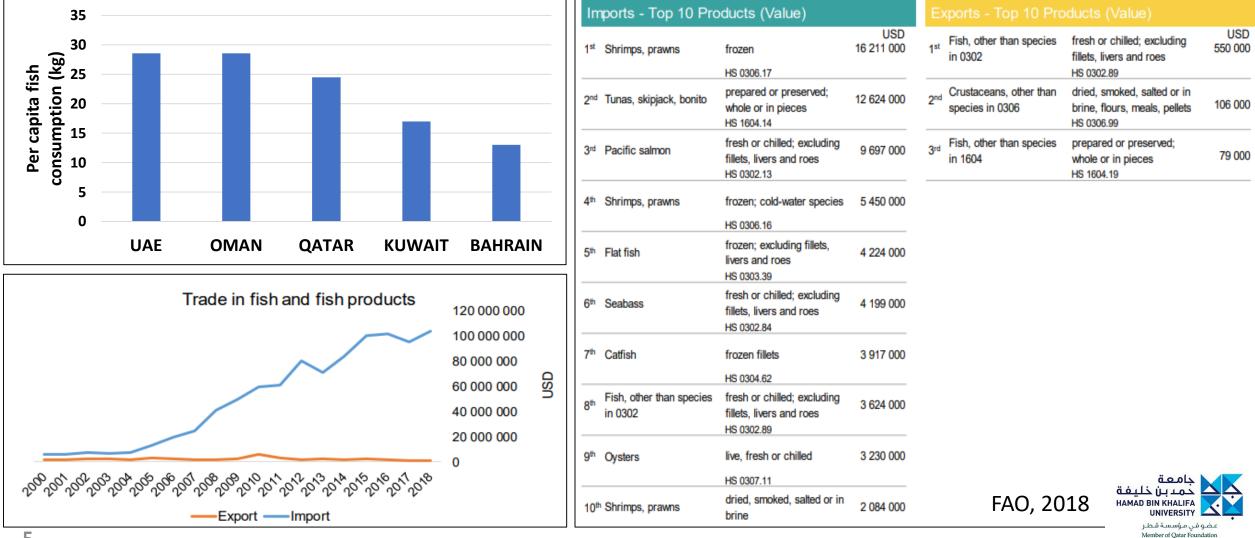
OUTLINE

- Background
- Research gap and objectives
- Methodology
- Analytical methods
- Results
- Conclusion
- References



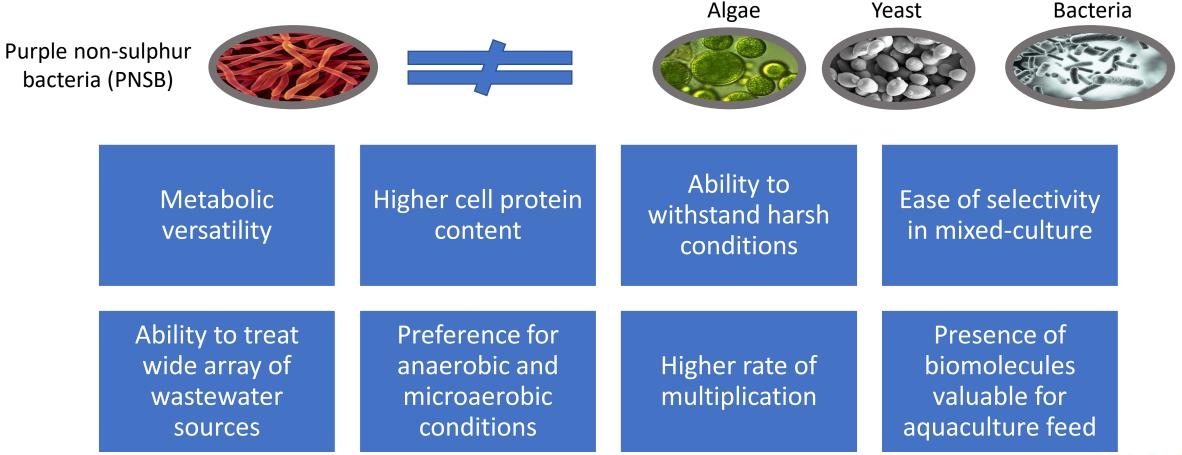
Background: Water stress in the Middle East

12 of the 17 most water-stressed countries globally are in the MENA region (Water Resources Institute, 2019) مؤسسة قطر


Background: Food security in the Middle East

Around 90% of food available in the GCC is imported (World Bank, 2021)

Background: Fish as a historical and major protein source in the Middle East

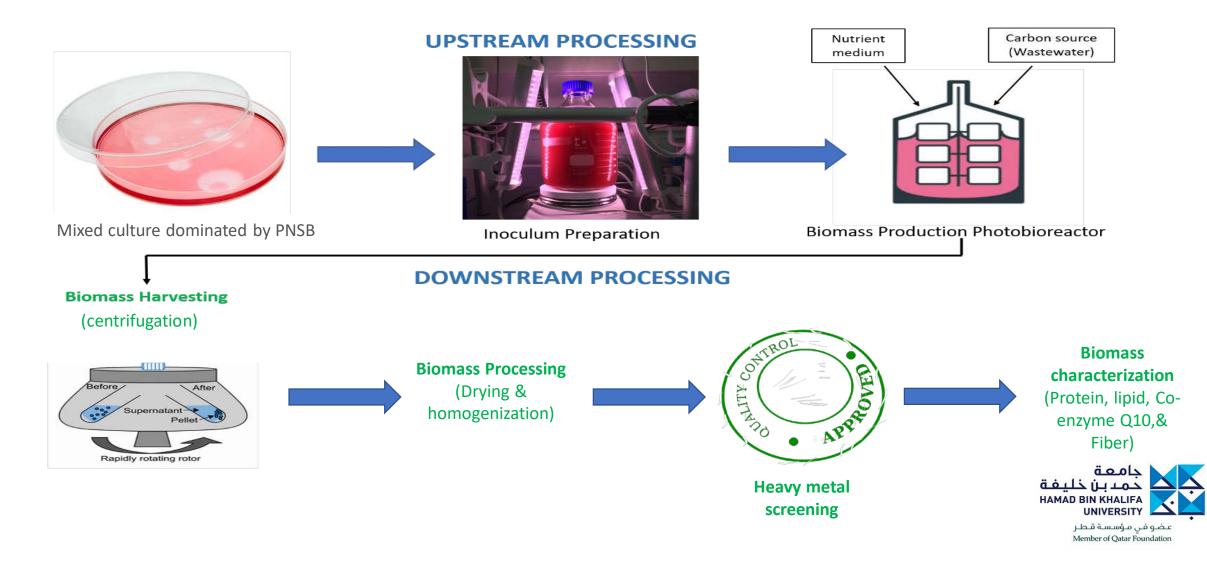


Background: Global aquaculture feed gap

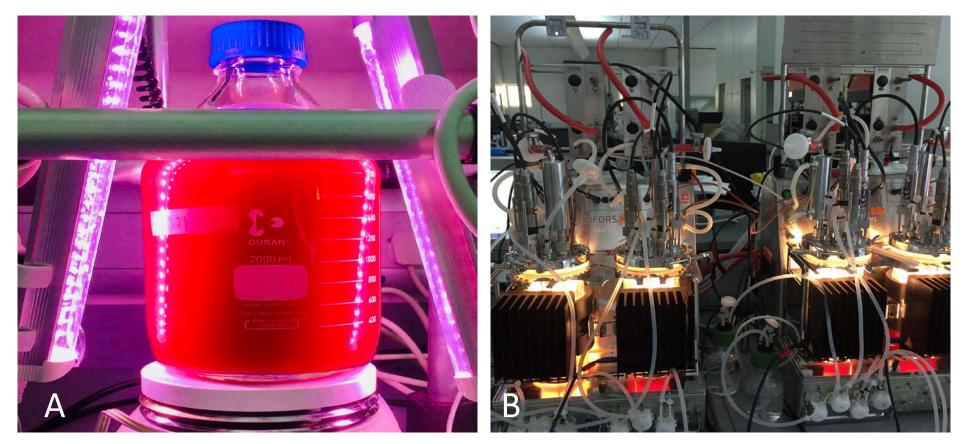
FAO, 2020; Jason A. 2021

Background: SCP as alternative protein source

Research Gap & Objectives


To date, most studies examining SCP production via PNSB have utilized agricultural-based wastewater due to its richness in organics and nutrients. However, such sources are limited in the GCC.

With the region being the global hub for Oil and Natural gas, this study examines the feasibility of utilizing an abundant waste source-Fuel Synthesis Process Water (FSPW) for SCP resource recovery.


This study evaluates the efficiency of **PNSB-based anaerobic** wastewater treatment, the volarization of PNSB biomass for valuable bioproducts, and preliminary FSPW/biomass quality assessment.

Methodology: Laboratory Flowchart

Methodology: Experimental Design

(A) Setup for preliminary study (diluted FSPW); (B) Setup for main experiment (undiluted FSPW)

Methodology: Analytical methods

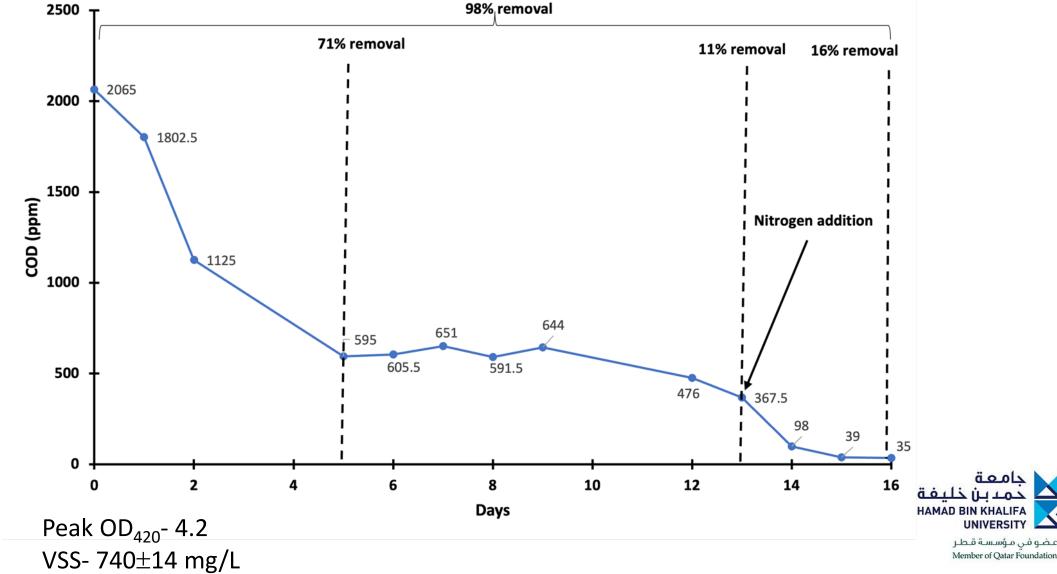
Parameters	Analytical Method/Instrument	
COD	Hatch digestion reactor method	
pH, dissolved oxygen, and temperature	Hamilton probe sensors	
Optical density	Shimadzu UV-3600 plus and TECAN Spark	
DC, IC, and TN Shimadzu TOC analyzer		
Volatile fatty acids and anions	Ion chromatography	
TSS/VSS/Fiber	APA Standards method	
Heavy metals	ICP-OES	
Zeta potential/Particle size	Zetasizer Nano ZS	
Metagenomics	Qiagen extraction kit and Ion S5 next generation sequencing system	
Protein/Lipid/Carbohydrate content	Modified Lowry method/Bligh&Dyer/Anthrone	
Pigments and Co-enzyme	Spectrophotometric methods	<mark>ايفة</mark> HAMAD

عضوفن مؤسسة قطر

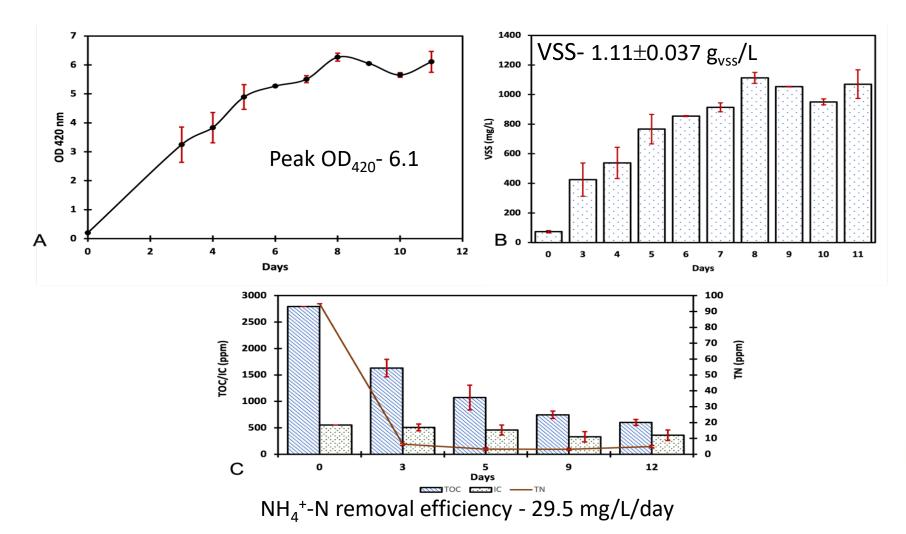
Member of Qatar Foundation

Results: FSPW physicochemical characteristics

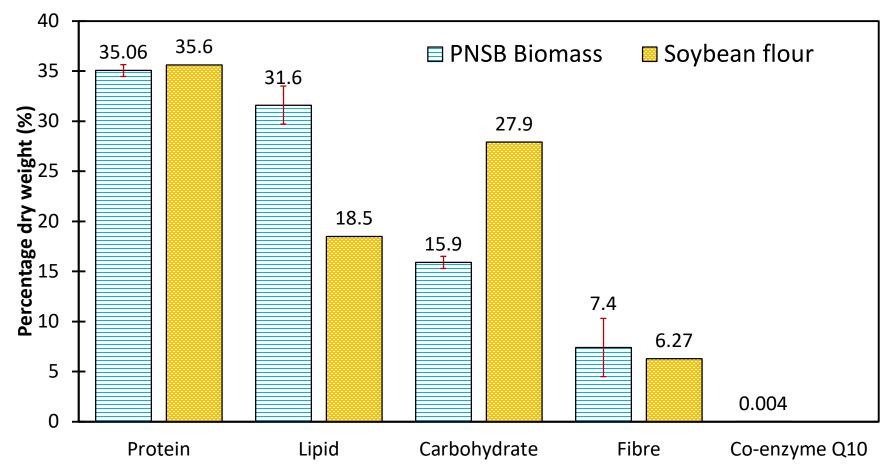
Characteristics	Concentration	
рН	3.48±0.12	
Electrical conductivity	191.6±0.14 μS/cm	
Total dissolved solids	123 mg/L	
COD	10,338±790 mg/L	
Total organic carbon (TOC)	2,794±214 mg/L	
Acetate	1,420±46 mg/L	
Butyrate	373±17 mg/L	
Iso-butyrate	1,493±127 mg/L	
Propionate	318±21 mg/L	
Valerate	283±13 mg/L	
Formate	34±0.60 mg/L	
Iso-valerate	46±0.01 mg/L	<mark>а́фі</mark> Нама
Characterized VFA fraction of TOC	1,953 mg/L	


عضو في مؤسسة قطر Member of Qatar Foundation

Results: FSPW heavy metal profile


Heavy metals	Concentration in FSPW(mg/L)	WEPA drinking water permissible limit (mg/L)	WEPA industrial effluent permissible limit (mg/L)		
Nutritionally Undesirable Metals					
As	Undetected	0.01-0.05	0.25		
Cd	Undetected	0.003	0.03		
Hg	Undetected	0.001	0.005		
Pb	Undetected	0.01	0.2		
TI	Undetected	-	-		
Nutritionally Desirable Metals					
Со	0.2±0.0	-	-		
Cr	Undetected	0.05	0.1		
Cu	Undetected	2	0.5		
Fe	0.65±0.07	<1	2.0		
Mn	0.9±0.06	0.5	1.0		
Мо	Undetected	-	-		
Ni	Undetected	0.02	0.2-6.4		
Se	Undetected	0.01			
Zn	0.7±0.1	Water Environment Part	nership Asia (WEPA), 2013		

Results: PNSB's efficiency in diluted FSPW (5X)



Results: PNSB's efficiency in undiluted FSPW

Results: SCP recovery from PNSB Biomass

Similar protein content has been reported in aquafeed protein sources like soybean, squid liver paste, and Hamab Bunkh commercial aquafeed (Ayba et al., 2012 and FAO 1997)

Member of Oatar Foundatio

Results: Heavy metal profile of PNSB biomass

	Metal	Concentration in Dry Biomass (mg/kg)			
	Nutritionally Undesirable Metals				
As		Undetected			
Cd		Undetected			
Hg		Undetected			
Pb		Undetected			
ТІ		Undetected			
Nutritionally Desirable Metals					
Со		33±0.0			
Cr		71.5±0.0			
Cu		86.2±0.05			
Fe		1,298±0.0			
Mn		518.8±0.5			
Мо		2.75±0.07			
Ni		49.5±<0.01			
Zn		152.2±0.2			

Conclusion

- Anaerobic treatment of FSPW with PNSB proved to be very effective, as high COD and nitrogen removal were observed.
- Recovered PNSB biomass had protein content similar to mainstream aquafeed protein sources.
- PNSB biomass also contained valuable bioproducts like lipids, carbohydrates, and co-enzyme Q10.
- Nitrogen proved to be a limiting nutrient.
- Further studies to are required to optimize culturing conditions for enhanced protein and high-value amino acid content.

Acknowledgement

 The authors would like to acknowledge the Qatar National Research Fund (grant MME01-0910-190029) and Shell Research and Technology Centre for their financial and technical support, respectively.

THANK YOU FOR LISTENING