

Hyperthermophilic fermentation (HF) of Food Waste allows the reliable recovery of Volatile Fatty Acids (VFA) by means of stripping.

<u>C.Torri¹</u>, V. Stefanelli¹, Y. Küçükaga,^{1,3} B. Galaverni,¹ A. Seritti,¹ A. Facchin.¹ ¹Department of Chemistry "Giacomo Ciamician", Laboratori "R.Sartori", University of Bologna, Ravenna, Italy ³Environmental Engineering Department, Gebze Technical University, Kocaeli, Turkey

Food Waste to VFA

- Beyond Methane, Volatile Fatty Acids (VFA) are the most thermodynamically stable organic compounds in anaerobic digestion → they can be produced with simple and non-sterile MMC
- Acidogenesis and spontaneous pH drop allow to converts food waste into VFA with high volumetric productivity with yield up to 70%
- The main issue is self-inhibition at 2-3% level that intrinsically limits the yield with high COD substrates (>50 gCOD/L)
- Extractive fermentation has been proposed as method to overcome toxicity and within one-step refining of FW into chemicals.

VFA polygeneration

VFA stripping *experimental Food waste Vapour saturated biogas+VFA headspace content 10 g/L and pH=4,75 1.0 0.9 0.8 CaO * 0.0 0.7 0.6 0.6 0.5 0.4 0.3 VFA 0.2 0.1 **.** Use 0.0 25 45 65

Biogas as solvent

Mass transfer= $K_La_1 (C_{sat}-C) = Q \cdot C = K_La_2 C$

- Low cost, losses are not a problem
- Not toxic, no toxic residues in the VFAs.
- Extremely good phase separation due to different density.

- Stripping on Free VFA (pH<5)
- High Henry constant (Low P_v) of VFA at low temperature
- Low mass transfer coefficient unless high power consumption

Hyperthemophilic digestion (HT) required for enough VFA in gas without huge gas pumping High surface area to obtain enough volumetric productivity

Ideal Ideal Energy for gas pumping= 100 (J/m₃)/ mBar

Ideal energy di **displace** 1 kg of COD (g)

Methods setup

Pump&Mix

- Mechanical pumps
- Mechanical stirring
- 10 g sample
- 5 L/min gas flow
- pH,VFA, COD, reactor-trap

Pressure equilibrating connection

stirrer

Static

- No mixing
- Gas diffusion
- Diffusion path <<u>5 cm</u>
- 10 g sample
- pH,VFA, COD, reactor-trap

JB reactor

- Pulsed react. rotation
- Gas diffusion (high)
- Diffusion path <<u>5 cm</u>
- 10 g sample
- pH,VFA, COD, reactor-trap

Methods setup: results

Model system, 4 h test

- VFA stripping rate (**gCOD/L d**)
- > Alkaline Trap NaOH=CaO=CaCO3
- > The **limiting step** is VFA(aq) \rightarrow VFA(g)
- > VFA stripping rete is proportional to K_{la} of the system.

Extractive fermentation test

- Acclimatization/bioagumentation of HT inoculum at 55-65°C from commercial thermophilic digesters (corn silage+sewage sludge mixed inocula+ 5% Glucose 2 week)→Methane producing HT inoculum
- Homogeneous FW sample with composition in line with that of literature (Strazzera *et al.* 2018)
- Test performed at 65°C with 9 g FW+ 1 g inoculum (high substrate/Inoculum ratio)

	Avg	St. Dev (n=5)
COD (gO/gWet)	224	±3,00
sCOD (gO/gWet)	115	±2,00
Ν	1,2	±0,05
С	41	±1,21
Н	6,5	±0,18
S	-	-
0	48	±1,32
ash	3,8	±0,10
C/N	38	±1,20
Lipids	32,9	±0,02
Carbohydrates	53,7	±0,01
Proteins	7,6	±0,36

Extractive fermentation test

- Initial phase → production of lactic acid, ethanol and VFA and pH drop to <5.2
- After 3 days, dynamic equilibrium is reached with 10-20 **10-20 g/L of VFA**.
- >3 days, constant broth composition with progressive VFA stripping.
- <5% (COD/COD_{in}) methane and hydrogen generation.
- Stripping is the rate limiting step until the exhaustion of the process.
- Extraction overcome the 3% barrier (145 gCOD_{VFA}/kg)
- **65% VFA** yield higher than non-extractive HT fermentation
- Average Volumetric Productivity ≈ **10 gCOD L**⁻¹ **d**⁻¹

Conclusions

Qualitative facts

- Hyperthermophilic fermentation with mixed sludge inoculum easily achieved in one week (ubiquitous microorganisms?)
- First Analytical system to evaluate acidogenesis yield beyond product inhibition (e.g. bio-acidification test)
- With selective removal of Volatile Fatty Acids → butyric acid is the main fermentation products

Quantitative Performances

- Even at acidic pH (pH<5) >80% FW solubilization, 65% VFA yield in 14 days .
- Achieved maximum >10 gCOD/L d Volumetric productivity (K_La≈30 h⁻¹) mainly related to gas-liquid exchange between fermentation broth and biogas.
- Average concentration in biogas at **60% of saturation** (≈1 gCOD/m³)
- Estimated Gas pumping Energy →1-3 MJ/kgCOD at 10 mBar Pr. Drop.

Cristian Torri Dept of Chemistry – Unibo cristian.torri@unibo.it

Thank you for your attention