

Olive Mill Wastewater Transformation from Pollutant to Sun Protection Paste

Manal Haj-Zaroubi, Nariman Mattar, Hassan Azaizeh

The Institute of Applied Research, The Galilee Society, Shefa-Amr, 20200, Israel

OMW: Olive Mill Wastewater

Olive Mill Wastewater (OMW) Current situation

In Israel:

- 140 olive mills 80% three phase system
- 150,000 m³/year OMW.
- 30,000 tons "Jift" OMSW wet.
- 12,000 "Jift" OMSW dry .

World wide:

- Two phase system 30 million tons of solids and liquid waste.
- Three phase system 15 million m³/year of OMW.

OMW – A Pollutant!

	рН	COD (gr O ₂ /l)		TP (gr/l) eq
Sample	Tot:	Total	Soluble	acid
OMW	4.5 – 5.5	90 - 220	50 - 150	3.0-15

It can pollute water bodies and the environment because of its composition:

- ✤ High BOD (up to 50 g/l) and COD (up to 200 g/l).
- **❖** Low pH (≤5).
- ♦ High EC (7-11 dS/m) and ion content (mostly K).
- ✤ High phenolic content.
- ✤ Smell and color.
- Toxic properties for living organisms

Structures of some bioactive phenols and phenolic glycosides in OMW

جمعية الجليل The Galilee Society אגודת הגליל

OMW from a pollutant to a resource

- ✤For a long time, OMW has been regarded as a hazardous waste with negative impact on the environment.
- However, this view is changing, and the potential of OMW to become a starting material, rich in bioactive compounds, is being recognized.
- ✤ In particular, polyphenols, abundant in OMW, are natural antioxidants for the food and pharmaceutical industries. A number of studies have also shown that polyphenols are effective as antibacterial, antiviral, and antifungal compounds.

Objective and Aim

The objective and aim of the proposed study is to produce, optimize and characterize an organic extract from OMW in order to obtain a prototype product composed of natural materials with high activity to protect the skin from UV rays.

THE ELECTROMAGNETIC SPECTRUM

WAVELENGTH (nm)

UV penetration into the layers of the skin

King Air magazine

Sun Protection Factor (SPF) and Critical Wavelength (CW)

SPF: is a relative value of how long a sunscreen will protect us from UVB rays relatively to a non protected skin (Mansur, J.S; et al 1986).

$$SPF = CF \times \sum_{290}^{320} EE(\lambda) \times I(\lambda) \times Abs(\lambda)$$

CW: The "Critical Wavelength" (λc) is the wavelength below which 90% of the area under the absorbance curve resides (COLIPA).

$$\int_{290}^{\lambda_{CW}} Abs(\lambda) \times d(\lambda) = 0.9 \int_{290}^{400} Abs(\lambda) \times d(\lambda)$$

UVB Sunscreen

Work Plan

After Centrifuge

Sieving (106MIC) – solid phase removal

Removal of unwanted solids

Measuring volume

1200ml OMW↓
VOAC= 1050ml

Results

COD reduction through OMW treatment

UV activity of the fractions obtained by Fractionation Guided Assay (FGA)

HPLC of AS and EtOAc fractions

HPLC chromatogram of AS extract at a concentration of 1000 ppm

HPLC chromatogram of EtOAc fraction of AS at a concentration of 1000 ppm

How to increase CW values? Adsorbent Resins

UV absorption curves of the Antisolvent extracts adsorbed to various resins

Extract of resins 800 ppm MeOH:water 1:1

UV activity of the resins' extracts in comparison to Antisolvent

Sample	Amount
OMW	1 L
AS	35 gr
Ext-resin 1	4.88 gr
Ext-resin 2	4.22 gr
Mixed Ext 1+2	9 gr

SPF and CW of FGA extracts versos resins

Fraction	$SPF \pm 3std$	CW±3std	TP±3 <i>std</i> [mg/l] eq to	Sugars ± 3 std
800 ppm			Caffeic acid	[mg/l)
				eq to D-(+)-Glucose
AS	11.27 ± 0.70	375 ± 0.00	68.82 ± 0.95	152.762 <u>+</u> 0.040
Hex Ext	3.48 ± 0	320 <u>+</u> 3.54	10.74 ± 1.90	ND
CLF Ext	12.23 <u>+</u> 0.23	355 <u>+</u> 3.54	80.98 <u>+</u> 0.22	ND
EtOAc Ext	35.72 <u>+</u> 0.79	360 <u>+</u> 7.07	350.46 <u>+</u> 1.68	86.452 <u>+</u> 0.019
AS_AFr	10.53 <u>+</u> 0.29	380 ± 0.00	57.68 <u>+</u> 0.22	139.682 ± 0.032

Fraction	$SPF \pm 3std$	CW±3std	TP±3 <i>std</i> [mg/l] eq to	Sugars ± 3 std
800 ppm			Caffeic acid	[mg/l)
				eq to D-(+)-Glucose
AS	11.27 <u>+</u> 0.70	378 <u>+</u> 1.15	68.82 ± 0.95	146.27 <u>+</u> 20
Ext-resin 1	26.83 ± 2.30	377 <u>+</u> 0.57	105.39 <u>+</u> 23.55	146.30 <u>+</u> 11.78
Ext – resin 2	18.78 <u>+</u> 0.51	377 <u>+</u> 1.10	75.28 ± 17.95	122.05 <u>+</u> 36.16
Mixed Ext 1+2	31.21 <u>+</u> 2.32	382 <u>+</u> 1.50	189.27 <u>+</u> 45.71	293.3 <u>+</u> 47.84

Conclusions:

- Polyphenols in OMWW are responsible for the SPF values and active against UVB radiation, while phenolic glycosides in OMWW are active against UVA radiation and responsible for the CW values.
- The fractions obtained from FGA process are active against UVB rays only and they could no longer be considered as broad spectrum.
- ✤ Adsorbent resins were a breakthrough in this research because they could adsorb phenols and phenolic glycosides from Antisolvent fraction, with impressive values (SPF > 30 and CW > 380).

Properties of resins

Resin	Resin 1	Resin 2
Matrix type	acrylate-	styrene-
	divinylbenzene	divinylbenzene
Particle size	20-60 mesh	20-60 mesh
Pore size	0.5 ml/g pore	0.55 ml/g pore
	volume	volume
	300-400 Å mean	200 Å mean
	pore size	pore size
Surface area	380 m²/g	800 m²/g

The interaction between the resins and	
:the extract	
Hydrogen bonds*	
Hydrophobic interactions*	
$\pi - \pi$ bonding*	