Production of bioactive peptides from salmon processing side-streams

MEMBER OF

BASQUE RESEARCH

& TECHNOLOGY ALLIANCE

B. Iñarra, J. Ibarruri, C. Bald, M. Gutierrez, D. San Martin, N. Luengo and J. Zufía

9th International Conference on Sustainable Solid Waste Management

15-18 JUNE 2022

Optimal utilization of seafood side-streams through the design of new holistic process lines

The overall goal of the project is to evaluate processes for production of new ingredients and/or valuable products based on solids and liquid side-streams from the fisheries and aquaculture value chain which have been stored in an improved manner compared to state-of-the-art.

https://www.waseabi.eu/

This project has received funding from the **Bio Based Industries Joint Undertaking** (JU) under the European Union's Horizon 2020 research and innovation programme under grant agreement **No 837726**. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio Based Industries Consortium

Bio-based Industries

@WaSeaBi

Side-streams	Process	Targeted products	
1-Mussel cooking water2-Herring process water3-Cod brine	Flocculation with centrifugation	Soluble proteins and lipids	
4-Mussel cooking water	Concentration technologies	Savoury compounds	
 5-Cod brine 6-Solid cod side-streams 7-Liquid herring side-streams 8-Solid herring side-streams 9-Mussel cooking water 	pH-shift technology	Protein isolates	
 10-Discards 11-Salmon solid side stream 12-Mussel shells 13-Cod solid side streams 14-Herring solid side streams 	Enzymatic hydrolysis	Bioactive peptides	
15-Cod solid side-streams	Enzymatic hydrolycic	Flavouring agents	
16-Salmon solid side-streams	Enzymatic hydrolysis		
17-Bones from Discards 18-Salmon bones	Enzymatic hydrolysis / alkaline treatment	Mineral ingredients	
19-Cod bones	Thermal treatment		

Production of bioactive peptides from salmon processing side-streams

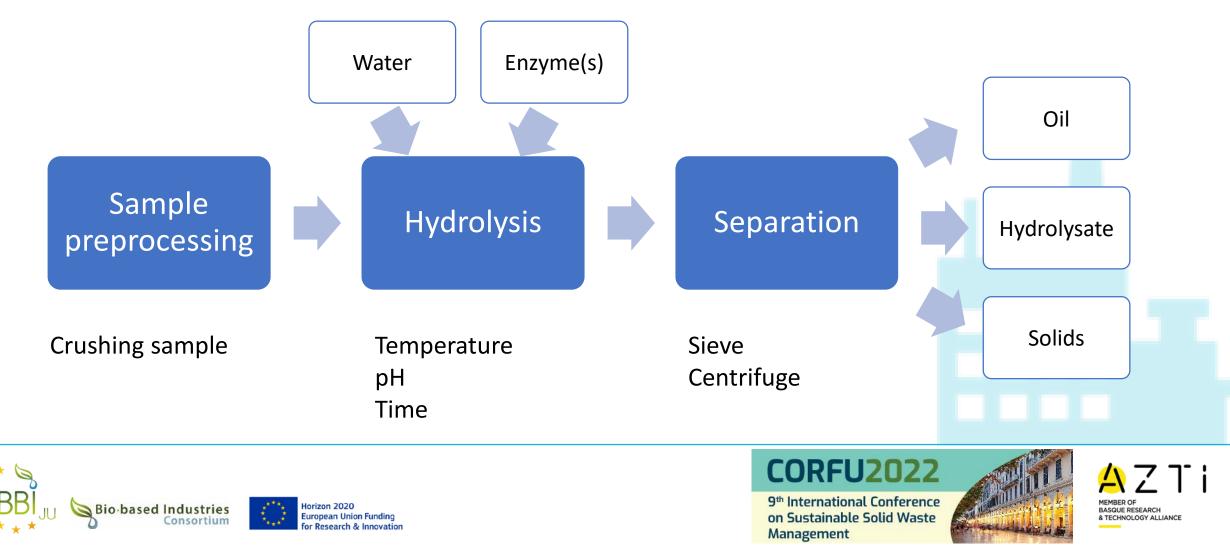
B. Iñarra, J. Ibarruri, C. Bald, M. Gutierrez, D. San Martin, N. Luengo and J. Zufía

15-18 JUNE 2022

Raw Material:

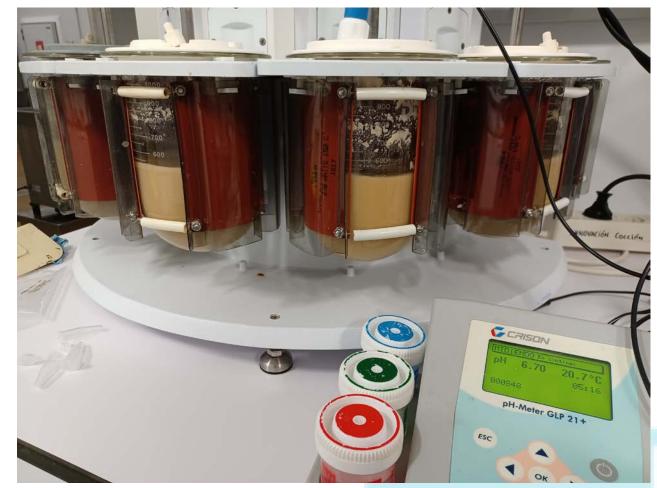
Backbones of salmon (*Salmo salar*) were use as model of fish transforming industry sidestream.

These by-products, along with heads and guts, are used as raw material to produce fishmeal and fish oil. An improved handling, with the separation of fractions, allowed their use as a food grade fraction unveiling their potential for more valuable uses.


9th International Conference on Sustainable Solid Waste Management

The process:

Enzymatic protein hydrolysis.



The process:

Enzymatic protein hydrolysis.

Six enzymes, with different enzymatic activity, where tested to produce protein hydrolysates:

- Broad-spectrum endo-proteases (P)
- Endo-protease of the serine type (A)
- Trypsin specific protease (T)
- Chymotrypsin like protease (C)
- Blend of endo- and exo-peptidases (F)
- Glutamic acid specific protease (G)

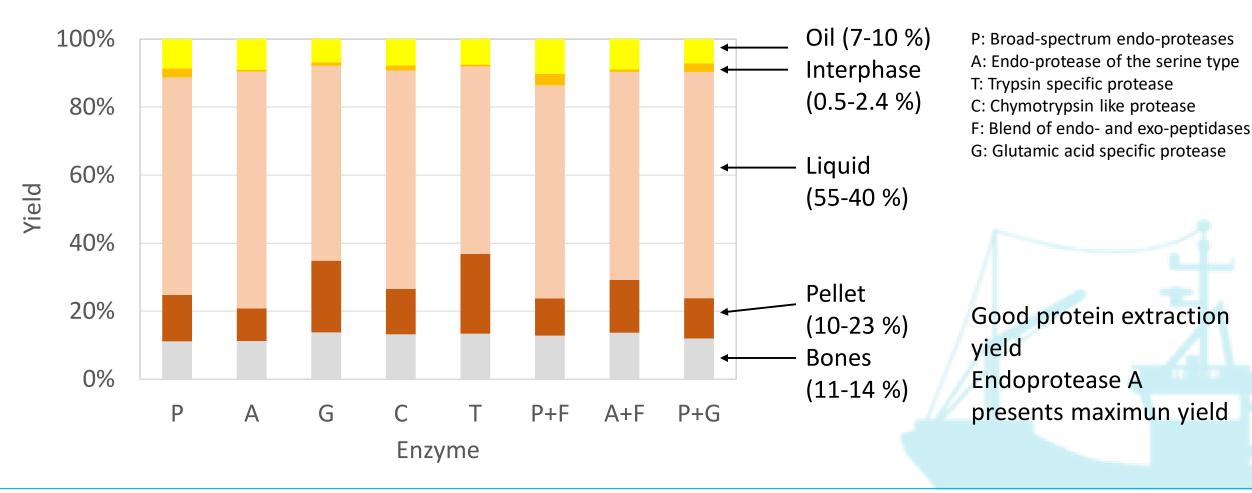
The process:

	Enzyme %	S:L	Temp. (ºC)	рН	Time (h)
Р	1	1:1	50	6	3
Α	1	1:1	60	8	3
G	1	1:1	50	6	3
С	1	1:1	70	6	3
т	1	1:1	45	6	3
P+F	1+1	1:1	50	6	3
A+F	1+1	1:1	50	6	3
P+G	1+1	1:1	50	6	3

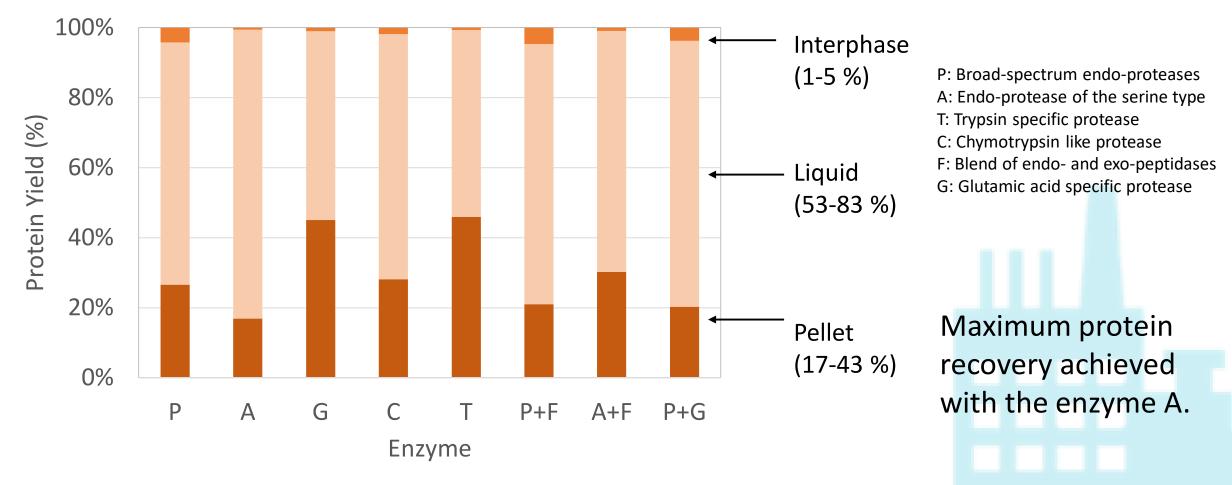
Bioactivity testing

The protein hydrolysates were freeze dried for their evaluation in the bioactivity test.

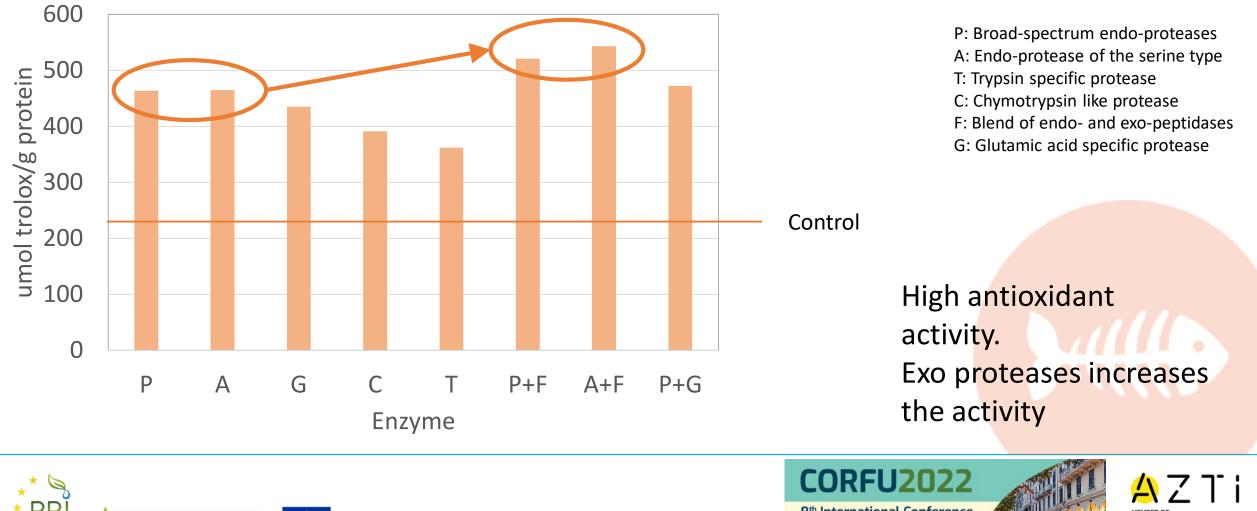
- <u>Antioxidant activity</u> of the samples were assessed by ABTS method
- <u>Antimicrobial properties</u> were assessed in a two-step approach:
 - 1. Screening with the agar diffusion method (ADM)
 - 2. Minimum inhibitory concentration (MIC) analysis of promising samples. Evaluated against the growth of: *Salmonella enterica* (CECT 4156), *Escherichia coli* (CECT 516), *Bacillus subtilis* (CECT 39), *Bacillus cereus* (CECT 131), *Staphylococcus aureus* (CECT 435), *Aeromonas salmonicida* (CECT 5173) and *Vibrio vulnificus* (CECT 529).
- <u>Antihypertensive capacity</u> was evaluated by the angiotensin converting enzyme (ACE) inhibition method.



Results: Fractions yields


BBI JU Bio based Industries Consortium Consortium Horizon 2020 European Union Fundin for Research & Innovation

Results: Protein extraction yield


Results : Antioxidant activity

Bio-based Industries

Iorizon 2020

European Union Fundin

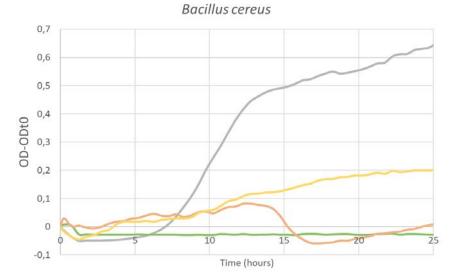
Research & Innovation

Results: Antibicrobial capacitiy

Agar diffusion method

	Salmonella enterica	Escherichia coli	Bacillus subtilis		Staphylococc us aureus	Aeromonas salmonicida	Vibrio vulnificus
Р	-	-	-	-	-	-	-
Α	-	-	-	-	-	+	-
G	-	-	+	+	+	-	-
С	-	-	-	-	-	-	-
т	-	-	-	-	-	-	-
P+F	-	-	-	-	-	+	-
A+F	-	-	-	-	-	-	-
P+G	-	-	-	-	-	+	-

P: Broad-spectrum endo-proteases
A: Endo-protease of the serine type
T: Trypsin specific protease
C: Chymotrypsin like protease
F: Blend of endo- and exo-peptidases
G: Glutamic acid specific protease



Results: Antibicrobial capacitiy

Hydrolysate	Strain	MIC (mg/mL)
G	Bacillus subtilis (CECT 39)	250
G	Bacillus cereus (CECT 131)	150
G	Staphylococcus aureus (CECT 435)	ND
Α	Aeromonas salmonicida (CECT 5173)	ND
P+F	Aeromonas salmonicida (CECT 5173)	ND
P+G	Aeromonas salmonicida (CECT 5173)	ND

Results: Antihypertensive activity

Antihypertensive activity was determined only in the hydrolysates obtained through the enzymes P, A and G (due to its positive results in ADM test).

	Concentration (mg protein/mL)	ACE Inhibition (%)	IC 50 (mg protein/mL)
Р	6.6	95.9	3.1
	1.3	26.9	5.1
А	6.5	100.0	1.9
	1.3	43.9	1.9
G	6.6	96.7	2.7
	1.3	33.1	2.7
P + G	6.8	93.7	2.0
P+G	1.4	44.9	2.0

Promising results, similar to those reported in literature.

Conclusions

₩Yields:

- Enzymatic process allow to quantitatively extract protein from salmon backbones.
- High protein hydrolisate yield have been obtained.

Mantimicrobial:

- ► Few positive results in ADM (with false postives).
- Samples with low DH present to higher antimicrobial capacity.
- Low MIC values related to analysis with crude hydrolysates.
- Sample fractionation might improve results.

Mantioxidant:

- High antioxidant values obtained.
- ₩Values increased with high DH (use of exoproteases).

Mantihypertensive

- All tested samples showed antihypertensive activity.
- ▶ IC50 → 1.9-3.1 mg protein /mL.
- Walues within the reported range (upper limit).
- Sample fractionation might improve results.

on Sustainable Solid Waste

Management

AZIII

BASQUE RESEARCH & TECHNOLOGY ALLIANCE

CORFU2022

9th International Conference on Sustainable Solid Waste Management

15-18 JUNE 2022