

Proposed Approach

Hybrid Thermochemical-Biological Biorefinery

- Biomass materials (wooden and/or organic waste) can be thermally converted into C1 rich syngas, energy-rich bio-oil, and porous carbonous biochar.
- Syngas and biochar can be utilized by syngas fermentation technology which can convert C1 gasses and H₂ into the organic acids (VFA).
- Porous and conductive **biochar** material is proposed to enhance anaerobic conversion.
- Bio-oil as a liquid fuel and CH₄ (Methane) as a gas fuel can be theoretically used to recover energy that is required for pyrolysis.
- N and P rich wastewaters can be used as nutrient source for both sequential biological systems (thanks to MMC technology).
- **PHA**s are the target final products as value-added biodegradable plastics.

Methodology

Biochar Based Diffuser Manufacturing

There are few previous attempts to combine PS and biochar to mainly upgrade foam material (can be found w/ biochar foam keyword). This is the first study to manufacture a highly porous diffuser end-product.

Methodology

• One of the initial complete biochar-based diffusers are presented to the right-side.

- At this moment we are able to manufacture even more **standardized** shapes at bigger scales with different geometry.
- A novel biomass originated carbon-based affordable product was achieved.

Parameters		Biochar-Diffuser		
Material(s)	-	Biochar, Polysterene		
Biochar : PS ¹ Ratio	M:M	2.0		
Active Length ²	mm	65.0		
Outer Diameter	mm	14.0 ± 1.5		
Inner Diameter	mm	8.5 ± 0.5		
Bulk Volume	mL	≈ 6.0		
¹ Polystrene, ² Length of the non-covered active part of the diffuser				

First Complete Biochar Based Diffusers

Methodology

COD as a Single Unit to Track Chemical Energy Flow

- Chemical oxygen demand (COD) as a widely used unit mainly for water treatment purposes so far.
- Mainly monitored just for indirect measurement of the organic content of liquid samples' (e.g. wastewaters).
- <u>Number of equivalent amount of oxygen required to oxidize all</u> available organic compounds in a given volume of sample.
- In fact, **COD** is directly correlated to the energy content of any solid, liquid, and gas samples.

1kg COD = 0.125 kmol e⁻ ≅ 15 Mjoule

 $[e.g.: 1L-H_{2} \times 0.084 \text{ g}-H_{2}/L \times 7.94 \text{ g}-COD/g-H_{2} = 0.67\text{g}-COD/L-H_{2}]$

• Allow to track chemical energy flow in biorefinery systems.

COD reactants = **COD** products

• Instead of mass balance, COD balance can be made for any biorefinery which usually deal with variety of input and output.

Analytical Methods and COD Approach

Analytical Equipments and Analysis Methods

Reference: "Could pyrolysis substitute hydrolysis in 2nd generation biomass valorization strategies? A chemical oxygen demand (COD) approach", C. Torri et al., 2022 Journal of Analytical and Applied Pyrolysis.

⁽¹⁾ Thermochemical Conversion

Intermediate Pyrolysis Derived Real Syngas

- Biomass is an abundant renewable source in the earth.
- Pyrolysis is an ancient and efficient thermochemical technique for biomass' chemical conversion.

Intermediate Pyrolysis Conditions

- Fir Sawdust used as representative lignocellulosic biomass.
- Batch pyrolysis conducted at moderate heating rate (550°C for 30 minutes) under gas recirculation.

⁽²⁾ Syngas Fermentation

- Bioreactor set-up was designed and constructed by the research team.
- Arduino is the key tool for configurable (flexible) bioreactor set-up with cost-efficiency.
- Four-ported (tetrapod) bottle caps provides sufficient inlet and outlet for such complex bioreactors.
- Pneumatic adapters and pipes together with gas-tight valves and pumps are required for such system.
- A small condenser bottle was combined to minimize water vapor losses.

Derepeters	R-1	
Parameters		Syngas Reactor
Substrate Material	-	Syngas
Operational Method	-	Daily Fed Continuous
Temperature Set	°C	36.0
Total Wet Volume	mL	500.0
Hydraulic Retention Time	days	25
Avarage Gas Loading Rate	g-COD/L-day	0.53 ± 0.14
Sodium Bicarbonate Level	g/L	40.0
Start-Mix Concentration	g-COD/L	10.0
Inoculum : Glucose : Medium	COD basis	40% : 50% : 10%
 Initial BES Concentration	тM	10.0

More information on low-cost Arduino based anaerobic bioreactors: "An original Arduino-controlled anaerobic bioreactor packed with biochar as a porous filter media", Küçükağa Y. et al. 2022 MethodsX.

Integration of MMC and Biochar Composite Material

⁽²⁾ Syngas Fermentation

- Over 75% of effluent COD was contributed by VFA production.
- Low effluent suspended COD content (< 250ppm) with pH 8.5 is favorable for the subsequent PHA bio-accumulation process.
- Initial glucose originated COD is extracted from the performance estimations.
- These promising preliminary results suggesting that, this biochar based real syngas fermentation approach can be exploited for the production of VFA-rich liquids.
- To achieve better productivities, larger biochar diffuser is required, which should occupy most of the wet volume.

Parameters	Unit	Syngas Reactor (R-1)
Total Input	g-COD	11
Total Output	g-COD	10
Overall COD Recovery	%	> 90%
Effluent VFA to COD Ratio	%	77% ± 6
$Diffuser_{BASED}VFA_{NET}Productivity$	g-COD/L-day	5.0
$Volumetric_{WET} VFA_{NET} Productivity$	g-COD/L-day	0.06

Integration of MMC and Biochar Composite Material

| Yusuf Küçükağa et al. CORFU 2022: 9th International Conference on Sustainable Solid Waste Management |

Fully Continous Lab-Scale System:

⁽³⁾ PHB Bio-Accumulation

 Instead of much more common fully aerobic feast/famine operation, where especially C/P ratio has to be regulated, a sequantial microaerophilic - aerobic PHA accumulation system is proposed REF.

B-Plas

- To avoid any chemical adjustment (presence of nutrients; N / P) for the fermentation effluent prior to the PHA accumulation system.
- Feast and famine regimes are sustained via sequantial several reactors.
- A continous small-scale centrifuge was developed to ensure continous biomass wihdrawn.
- 34% of PHB content has achieved by the MMC s far.

Conclusion

Integrated but simplified biorefinery approach for PHA from biomass.

Direct bio-utilisation of pyrolysis derived real syngas with biochar presence is possible.

Acetic acid and nutrient rich fermentation broth with pH≈8 is ideal for PHA-producers.

No chemical adjustment or pre-treatment is required, thanks to sequantial MMC systems.

Gasifier derived syngas bio-utilisation still required to be confirmed.

Syngas fermentation productivity should be increased (larger and better bio-diffsuers).

Thank you for your attention!

I would like to thank to TUBITAK (Scientific and Technological Research Council of Turkey) for the scholarship provided within 2214A PhD research fellowship programme.

Yusuf Küçükağa

Joint PhD Candidate Alma Mater Studiorum - Università di Bologna (IT) Department of Chemistry "Giacomo Ciamician" yusuf.kucukaga@unibo.it

Research Assistant Gebze Technical University (TR) Environmental Engineering Department ykucukaga@gtu.edu.tr

