Life cycle assessment of the biofuel production from lignocellulosic biomass in a hydrothermal liquefaction – aqueous phase reforming integrated biorefinery

Giulia Zoppi, Edoardo Tito, Isabella Bianco, Raffaele Pirone, Samir Bensaid, Giuseppe Pipitone

Politecnico di Torino
Italy
Could biofuel be a possible solution for the decarbonization of trucking, shipping and aviation?

WET biomass

BIOCRUDE

Aqueous phase

Gas phase

Solid phase

Needs valorization! Because of low concentration of carbon (0.4-2 wt C%) and expensive wastewater treatment

Needs upgrade! Because of high heteroatoms content

Catalytic hydrogenation: need of GREEN hydrogen
Aqueous phase reforming (APR)

APR is a catalytic reaction able to **produce** hydrogen starting from oxygenated hydrocarbons dissolved in water, working at **mild pressure and temperature** directly in the liquid aqueous phase.
Methodology

Our feedstocks

Corn stover (CS)

Generally left on the field after corn harvesting as soil nutrient

RESIDUE

Lignin-rich stream (LRS)

By-product of a 2nd generation bioethanol plant

No value → WASTE
Methodology

Integration of HTL and APR

Fresh feed

Feed → HTL → Bio-crude

Gas phase

HTL → Bio-fuel

External H₂

H₂

APR

Aqueous phase

Recycle

Purge
Are we sure that it is environmentally sustainable?

Life Cycle Assessment
ISO 14040 and 14044

LCA is an objective tool for analyzing and quantifying the environmental consequences of products (services) during all their life-cycle, from the extraction of raw materials, through industrial production, including the use phase and the end-of-life disposal.
Methodology

LCA of biofuel from CS

Functional unit: 1 MJ of biofuel

System boundaries:
Methodology

LCA of biofuel from LRS

Functional unit: 1 MJ of biofuel

System boundaries:
Methodology

Different ways to assess biogenic carbon

- **“0/0 approach”:** neither the uptake nor the release of biogenic carbon is considered in the calculation of impacts for the global warming potential.

- **“–1/+1 approach”:** the uptake of biogenic CO₂ carbon is considered an environmental credit, while the release is considered an environment burden, with the same impact factor of fossil carbon.

- **Dynamic approaches** based on time-dependent characterization factors.
Impact results

Global warming potential

0.06 kg CO₂ eq. for LRS
0.05 kg CO₂ eq. for CS

Fossil resource depletion

0.68 MJ for LRS
0.68 MJ for CS
Impact results

Acidification potential
- 474 mg SO2 eq. for LRS
- 709 mg SO2 eq. for CS

Eutrophication potential
- 23 mg PO4 for LRS
- 69 mg PO4 for CS
Sensitivity analysis

The non-biogenic nature of biomass

The cumulative GWP increased from 59.7 to 114.6 g CO2 eq./MJ biofuel (+92%)

The cumulative GWP increased from 50.3 to 99.9 g CO2 eq./MJ biofuel (+98%)
LCA GWP results

Comparison of global warming potential between HTL-APR and alternative biotecnologies (1 MJ) and HTL-APR (base) and HTL-APR (hydropower).

GWP results (g CO₂ eq./MJ):
- HTL-APR (base)
- HTL-APR (hydropower)
- Fermentation
- Gasification
- Pyrolysis
- Fossil diesel

Bars show GWP results with different technologies.
THANK YOU
FOR YOUR ATTENTION

Isabella Bianco
isabella.bianco@polito.it