

Life cycle assessment of the biofuel production from lignocellulosic biomass in a hydrothermal liquefaction – Click to edit Master subtitle style. Aqueous phase reforming integrated biorefinery

Giulia Zoppi, Edoardo Tito, Isabella Bianco, Raffaele Pirone, Samir Bensaid, Giuseppe Pipitone

> Politecnico di Torino Italy

Research framework

Could biofuel be a possible solution for the decarbonization of trucking, shipping and aviation?

Research framework

Our feedstocks

Corn stover (CS)

Generally left on the field after corn harvesting as soil nutrient RESIDUE

Lignin-rich stream (LRS)

By-product of a 2nd generation bioethanol plant

No value <a>? WASTE

Integration of HTL and APR

olem

problem

em

probl

proble

prot

Are we sure that it is environmentally sustainable?

Life Cycle Assessment

LCA is an objective tool for analyzing and quantifying the environmental consequences of products (services) during all their life-cycle, from the extraction of raw materials, through industrial production, including the use phase and the end-of-life disposal

LCA of biofuel from CS

Functional unit: 1 MJ of biofuel

System boundaries:

LCA of biofuel from LRS

Functional unit: 1 MJ of biofuel

Different ways to assess biogenic carbon

"0/0 approach": neither the uptake nor the release of biogenic carbon is considered in the calculation of impacts for the global warming potential

"-1/+1 approach": the uptake of biogenic CO2 carbon is considered an environmental credit, while the release is considered an environment burden, with the same impact factor of fossil carbon

dynamic approaches based on time-dependent characterization factors

CO2
CH4

Biomass

Impact results

Global warming potential

0.06 kg CO2 eq. for LRS 0.05 kg CO2 eq. for CS

Fossil resource depletion

0.68 MJ for LRS 0.68 MJ for CS

CORFU2022

Impact results

Acidification potential

474 mg SO2 eq. for LRS 709 mg SO2 eq. for CS

Eutrophication potential

23 mg PO4 for LRS 69 mg PO4 for CS

CORFU2022

Sensitivity analysis

The cumulative GWP increased from 59.7 to 114.6 g CO2 eq./MJ biofuel (+92%)

The cumulative GWP increased from 50.3 to 99.9 g CO2 eq./MJ biofuel (+98%)

38

Comparison of global warming potential between alternative LM f) seigolondo technologies (1 MJ technologies

LCA GWP results

Isabella Bianco fi.otilog@oonsid.slledssi

THANK YOU FOR YOUR ATTENTION