Combined production of biogas and volatile fatty acids from a pure primary sludge: preliminary results of a pilot test

B. Ruffino*, G. Campo*, A. Cerutti*, G. Scibilia**, M. De Ceglia** and M.C. Zanetti*

*Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi n° 24, Torino 10129, IT
**Smat - Società Metropolitana Acque Torino
Castiglione Torinese WWTP

- Municipal and industrial wastewater
- Capacity: 2,000,000 E.I. (1.5M civil inhabitants, 800 industrial plants)
- Average flow rate: 7 m3/s
Biodegradability

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>140 m³/h</td>
</tr>
<tr>
<td>q (Primary Sludge)</td>
<td>61.5 %</td>
</tr>
<tr>
<td>q (Secondary Sludge)</td>
<td>38.5 %</td>
</tr>
<tr>
<td>Primary Sludge TSfed</td>
<td>2,755 kg/h</td>
</tr>
<tr>
<td>Primary Sludge VSfed</td>
<td>1,975 kg/h</td>
</tr>
<tr>
<td>Secondary Sludge TSfed</td>
<td>1,562 kg/h</td>
</tr>
<tr>
<td>Secondary Sludge VSfed</td>
<td>1,076 kg/h</td>
</tr>
<tr>
<td>Methane production</td>
<td>650 Nm³/h</td>
</tr>
<tr>
<td>CH₄(WAS)/ CH₄(Tot)</td>
<td>15 %</td>
</tr>
<tr>
<td>Primary Sludge TSdischarged</td>
<td>1,860 kg/h</td>
</tr>
<tr>
<td>Primary Sludge VSdischarged</td>
<td>1,005 kg/h</td>
</tr>
<tr>
<td>Secondary Sludge TSdischarged</td>
<td>1,399 kg/h</td>
</tr>
<tr>
<td>Secondary Sludge VSdischarged</td>
<td>907 kg/h</td>
</tr>
</tbody>
</table>

-49 %

-10 %
The production of CH4 from COD in anaerobic processes is mainly determined by methanogenesis, with a maximum conversion efficiency of 0.25 kg CH4/kg COD, or \(0.35 \text{ Nm}^3 \text{ CH}_4/\text{kgCOD}\)

\[\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O(l)} \quad \Delta H^\circ = -890 \text{ kJ/mol CH}_4\]

suggesting that 13.91 kJ of energy could be obtained from each gram COD removed from wastewater. \((13.91 \text{ kJ/gCOD})\)

“….the A-stage is primarily designed for direct capturing or conversion of COD to methane gas via anaerobic treatment without producing excess sludge and the B-stage is designated for nitrogen and phosphorous removal – may offer a feasible engineering option for turning the operation of current municipal WWTPs from being energy-negative to energy self-sufficient.”
Temperature Phased Anaerobic Digestion (TPAD)

Research

Enhanced biological phosphorus and nitrogen removal (EBPNR)

Primary sludge

WAS

VFA

VFAs

HRT = 2 d

HRT = 2 d

HRT = 2 d

HRT = 2 d

38 °C

38 °C

55 °C

55 °C

55 °C

55 °C

Specific Methane Production
Materials and methods

Temperature Phase Anaerobic Digestion

Sludge

1st Stage

HRT = 2 d

55 °C

Biogas/Methane

2nd Stage

HRT = 20

38 °C

Biogas/Methane

Biogas/Methane

Digestate
Materials and methods

Pre-thickened primary sludge

- Total Solids %
- Volatile Solids %
- pH
- Acidity and Alkalinity
- sCOD mg/L
- sP mg/L
- NH₄⁺ mg/L
- VFAs

Digested sludge

- Total Solids %
- Volatile Solids %
- pH
- Acidity and Alkalinity
- sCOD mg/L
- sP mg/L
- NH₄⁺ mg/L
- VFAs
Results:

VFAs – Primary Sludge

Days

0 2 4 6 8 10 12

0 2 4 6 8

VFAs – Primary Sludge

Results:

Days

0 2 4 6 8 10 12

0 2 4 6 8
Results:

Mesophilic PS-AD

![Diagram of specific methane yield](image)

Specific Methane Yield

\[\text{Nm}^3/\text{kg VS} \]

\[\text{OLR} \ (\text{kg VS}/(\text{m}^3 \text{ day})) \]
Results: 1st Stage PS-AD

1st Stage

Daily Methane Production

- **Specific Methane Yield**

Results:
Results: TPAD WAS

- Biogas/Methane
- 38 °C
- HRT = 20

Specific Methane Production

Days

Nm³ CH₄/kgVS
Results:

Specific Methane Production

- Biogas/Methane at 38 °C
 - HRT = 20

- Biogas/Methane at 55 °C
 - HRT = 3 d

1st Stage

2nd Stage
the B-stage is designated for nitrogen and phosphorous removal – may offer a feasible engineering option for turning the operation of current municipal WWTPs from being energy-negative to energy self-sufficient
1st Stage PS-AD

VFAs Yield vs Specific Methane Production

Days

g COD/VFAs/g x COD/day
1st Stage PS-AD

VFAs Yield vs Specific Methane Production

g CODVFAs/g x CODadd

Days
Temperature Phased Anaerobic Digestion (TPAD)

On Going Research Activity (B-Stage)

Primary sludge

38 °C

HRT = 20

Chemically enhanced primary sedimentation

Anoxic Reactor

Aerobic Reactor

Enhanced biological phosphorus and nitrogen removal (EBPNR)

VFAs

PAO batch activity tests

Denitrification batch activity tests

Biological Activity Tests
Combined production of biogas and volatile fatty acids from a pure primary sludge: preliminary results of a pilot test

B. Ruffino*, G. Campo*, A. Cerutti*, G. Scibilia**, M. De Ceglia** and M.C. Zanetti*

*Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi n° 24, Torino 10129, IT

**Smat - Società Metropolitana Acque Torino SPA

Thanks for your attention