Multicomponent hydrogel fertilizer technology for sustainable agriculture

Kiataazynatehojnackaä,pAlaksandra Gersz,

Anna Witek-Krowiak

Department of Advanced Material Technologies, Faculty of Chemistry,
Wrocław University of Science and Technology

Wrocław University
of Science and Technology

· IFA:

- · 46% ammonium nitrate,
- · 23% ammonia,
- · 14% of the urea volume,
- · 11% ammonium phosphate,
- · 21% of the global potassium trade, were retained as the consequence of Ukraine-Russia war.
- Europe is more dependent on Russia in this regard. Russia and Belarus have been key EU partners in fertilizer trade.
- It is estimated that it will take 10 years to rebuild the mineral fertilizer market.
- According to the IFA, it is currently not possible to meet the global demand for fertilizers.

Russia and Belarus have supplied:

- · natural gas
- · 35% of phosphates
- · 60% of potash and to the EU market.

Solution:

- · Sustainable agriculture
- · Locally available feedstock
- · Circular economy waste as a resource
- · Integrated crop-livestock system
- · Precision agriculture

 $https://www.researchgate.net/figure/Circular-agriculture-Source-ASG-Livestock-Manure-brochure-WUR_fig1_336085866$

Challenges and problems in agriculture population growth

climate change

overfertilization

nutrients leaching to groundwater

Nutrients for healthy plant growth

Hydrogel fertilizers - key to sustainable agriculture

- → natural material
- → high moisture storage capacity
- → biocompatibility
- → biodegradability
- → controlled release of nutrients

Matrix based hydrogels

Matrix based hydrogels

components	function
sodium alginate	non-toxic, biocompatible, abundantly available and relatively cheap natural material
sodium carboxymethylcellulose	additional building component of hydrogel structures, increases strength, mechanical, stability, swelling properties
peat	rich in many functional groups, high affinity for ion sorption
starch	low-cost and biodegradable coating material, improves mechanical properties

Sorption kinetics of copper ions

$$Q_t = Q_e - \left(Q_e^{1-n_1} + (1+n_1)k_ut\right)^{\frac{1}{1-n_1}}$$

Sorption kinetics determined by generalized model for nutrients with: peat (A) and starch (B)

NPK release

slow release of nitrogen

through
electrostatic
interactions,
nitrogen
binds to the
matrix

NPK release in water after 24h

the release of nitrogen occurs during the degradation of alginate (about 2 weeks)

NPK release in sodium citrate after 24h

Release kinetics from coated

ChemForAgro

- 2 ALG + NPK coated
- 3 CS coated
- 4 hybrid coated

Germinatio n tests

Legend:

K1 - Control test without fertilizer

K2 - Control test with liquid NPK fertilizer

% - the dose of applied fertilizer, where

100% = 140kg nitrogen/ha

I - ALG-based fertilizer

II - fertilizer based on ALG+CMC

Concentration optimization by

COMPONENT	MIN [%]	MAX [%]
ALG	1,5	6
СМС	0,1	3
STARCH	2	20
PEAT	2	10

System response: content of adsorbed copper ions

Raw material cost to produce 1 kg of fertilizer

components	Cost [€]
alginate sodium	5.88
carboxymethylcellulose sodium	2.47
peat	1.08
starch	1.10
ammonium nitrate	0.61
monoammonium phosphate	6.37
potassium chloride	6,66
calcium chloride	3.98
summary	28.15

To sum up

- The designed matrices based on biopolymers, carboxymethylcellulose and alginate, demonstrated the ability to encapsulate fertilizer nutrients NPK.
- The effectiveness of slow-release coatings has been demonstrated. They reduced the release of calcium and potassium by 35% and phosphorus by 45% per day.
- 3) Biosorbents such as peat enable the sorption of significant amounts of copper ions, making it possible to design fertilizers with extended micronutrient release times

WHAT'S NEXT?

Use of other additives, e.g. bentonite, and coatings for more complex materials

prof. Katarzyna Chojnacka

Department of Advanced Material Technologies,

Faculty of Chemistry,

Wrocław University of Science and Technology, Poland

