Sustainability performance of biorefineries based on country socio-economic context and technical, economic, environmental, and social aspects

Juan Camilo Solarte-Toro, Mariana Ortiz-Sanchez, Carlos Ariel Cardona Alzate

¹Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Caldas, Zip Code: 170003, Colombia.

Presenting author email: jcsolartet@unal.edu.co

June, 2022

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES

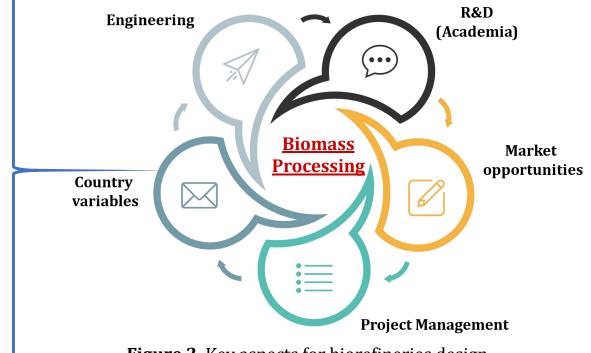
Content

- **1.** Introduction
- 2. Research Objective
- 3. Methodology
- 4. Results
- 5. Conclusions
- 6. Acknowledgments
- 7. References

1. Introduction

Sustainability and Biorefineries design

Sustainability


It has been defined as the perfect balance between economic, environmental, and social aspects of a system or process overtime.

The Brundtland Report – Our Common Future, 1987 Social RQ Ø Environment **Econo**mics 60 ѺѦ **Figure 1.** Sustainability Dimensions (Triple- Bottom Line)

Research group in Chemical, Catalytic and Biotechnological Processes

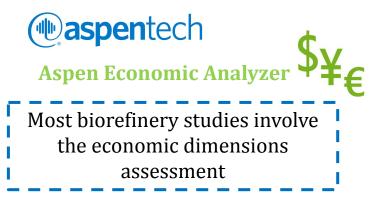
Biorefineries Design

Biorefineries design must involve several aspects related to the specific-context where these facilities will be implemented.

Figure 2. Key aspects for biorefineries design

Biomass Definition: All renewable resource able to be upgraded in any valuable product. Not only energy crops and 2G biomass.

1. Introduction


Assessment methodologies of sustainability dimensions

<u>Economic</u>

Assessment methodologies

- Quantitative Indicators (NPV, PBP) based on Aspen Economic Analyzer
- Life cycle costing (LCC)
- Early-stage costing (Economic Potential)

Tools have been created to give costs estimations

<u>Environmental</u>

Assessment methodologies

- Environmental impact assessment (WAR GUI, GREENSCOPE)
- Environmental life cycle assessment (E-LCA)
- Carbon and Water footprints

Tools have been created to calculate the impact of a process or system

Most biorefinery studies involve the environmental dimension assessment

<u>Social</u>

Assessment methodologies

- Social life cycle assessment (S-LCA)
- Social impact assessment (SIA)
- Qualitative indicators
- Quantitative indicators

Tools are being created to make a more reliable social assessment

Few/Scarce biorefinery studies involve the social dimensions assessment

1. Introduction

Biorefineries design considerations related to specific country conditions

LPI

CIP

3I

LPI

CIP

3I

Region	2G biomass source
North America	Corn, Forest biomass
South America	Sugarcane, Rice, Palm
Europe	Wheat, Olive, Corn

Table 1. Biomass sources per region

Figure 3. World Map

Biomass use options

- Biomass upgrading and valorization *in situ* in *Brownfield* and *Greenfield* processes
- 2. Biomass trade without any further valorization

Research group in Chemical, Catalytic and Biotechnological Processes

Country variables to be considered

Logistic Performance Index (LPI), Competitiveness Industrial Performance (CIP), Industrial Intensity Index (3I), Taxes, Wages – **Indicators estimated by the UN**

For example:

- 1. Products can be composed of high-value added compounds
- Biomass upgrading at large scale in existing plants
- 3. Possibilities to implement high-tech processes at different scales
- 1. Most biomass applications could be related to bioenergy production
- 2. Biomass upgrading at large scale in existing plants is scarce
- 3. Small-scale processes are more suitable to respond to regional needs

PROGRAMA COLOMBIA CIENTÍFICA RECONSTRUCCIÓN DEL TEJIDO SOCIAL EN ZONAS DE POSCONFLICTO EN COLOMBIA


2. Research objective

This work aims to propose a sustainability assessment strategy of different biorefinery configurations using a comprehensive index based on technical, economic, environmental, and social information involving country-specific data.

Ste-by-step to involve country variables in the assessment of biorefineries sustainability

Defining the sustainability index

$SI = w_1 \sum Technical + w_2 \sum Economic + w_3 \sum Environmental + w_4 \sum Social$

Sustainability weighting factors

Table 2. Weighting factors approach adapted from Life Cycle Initiative, 2020,UN

Approach	Description	Advantages	Disadvantages
Equal weighting	All factors have the same value	Simple and easy to apply	Neutrality
Robust indicators	Most robust factors have higher values	Robust indicators give the final result	Subjectivity.
Stakeholder values	Weights are defined	Stakeholders' opinions are involved.	Time-consuming.

Sustainability dimensions

Table 3. Indicators involved to estimate the Sustainability Index (SI) –Solarte-Toro, 2020, ESPR, DOI: 10.1007/s11356-022-20857-z

Dimension	Indicators	Symbol
Technical	Process Mass Intensity	PMI
	Renewability Index	RI
	Self-generation index	SGI
Economic	Payback Period	PBP
	Turnover ratio	TR
Environmental	Carbon Footprint	CF
	Water Footprint	WF
Social	Minimum to Living wage ratio	M/L

Defining the sustainability index

Normalization approaches

Option 1 (Ruiz-Mercado, 2011)

Indicator normalization = $\frac{\text{Actual} - \text{Worst}}{\text{Best} - \text{Worst}}$

Best and Worst cases are defined depending on the indicator. Then, a **lower level of subjectivity is introduced and the comparison of the results is easier**

Option 2 (ISO 14040/44)

Indicator normalization = $\frac{\text{Actual}}{\text{Normalization Value}}$

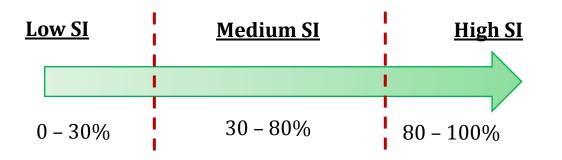
Normalization value is defined by the user. Then, a high level of subjectivity is introduced and the comparison of the results is more difficult

Research group in Chemical, Catalytic and Biotechnological Processes

Dimension	Symbol	Best case	Worst case
Technical	PMI	1.0	50.0
	RI	1.0	0.0
L	SGI	1.0	0.0
Economic	PBP ¹	0.1*Project lifetime	0,9*Project lifetime
	TR	4.0	0.2
Environmental	CF ²	0.5	20.0
	WF ³	1.0	20.0
Social	M/L	1.0	0.5

¹ Payback period is given in years

²Carbon footprint is given in kg CO₂-eq/kg of raw material


³Water footprint is given in m³/kg of raw material

Defining the sustainability index

<u>Sustainability Index (SI) – Value range</u>

Sustainability Index (SI) – Applications

- 1. Compare the sustainability of different biorefinery configurations in the same country
- 2. Compare the sustainability of the same biorefinery configuration in different regions/countries
- 3. Compare the sustainability of different facilities implemented in different countries

Research group in Chemical, Catalytic and Biotechnological Processes

Case Study

Type of application: Application 1.

Step 1. Problem identification: Sub-use of avocados in rural zones and low farmer's incomes.

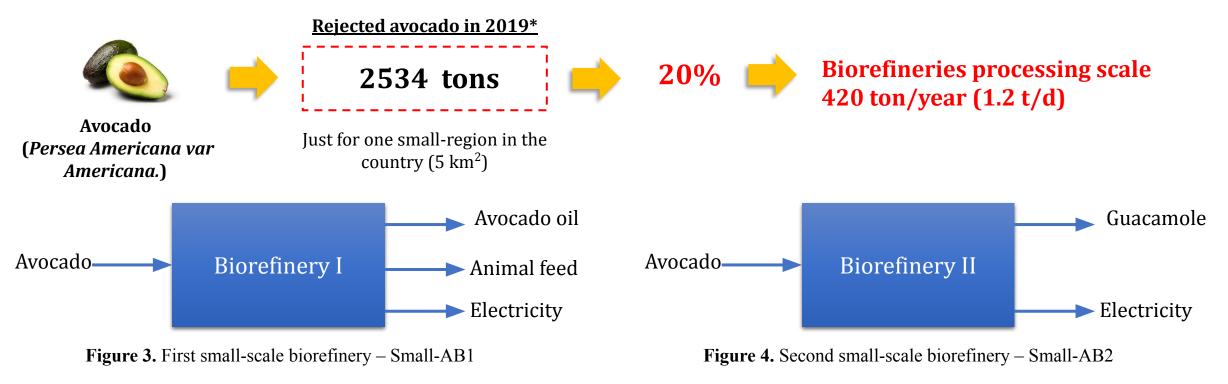
Step 2. Process context: Colombia

Rural zones

Step 3. Country variables:

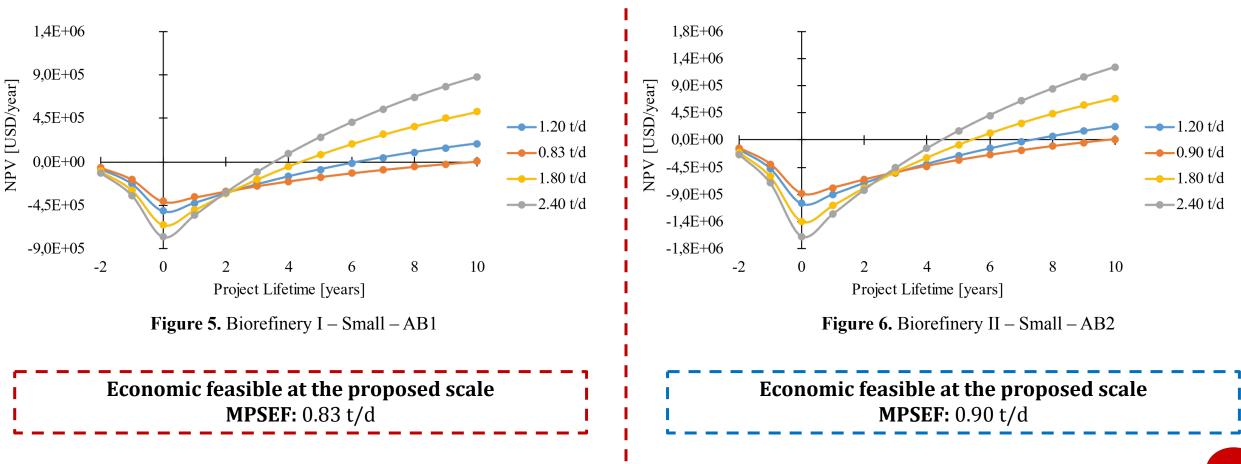
Item	LPI	CIP	31
Colombia	2.94	0.032	0.296
World	3.64	0.067	0.323
% Deviation	-19.23	-52.23	-8.35

 Table 5. Country variables


If the values of the country variables are lower than the average world values, **small-scale and low complex biorefineries** would be the best alternatives

<u>Case Study – Avocado-based biorefineries</u>

Step 4. Define scale and products



<u>Case Study – Avocado-based biorefineries</u>

Step 5. Sustainability dimensions assessment – Economic feasibility estimation at the proposed scale

<u>Case Study – Avocado-based biorefineries</u>

Step 5. Sustainability dimensions assessment

Technical Dimension

 Table 6. Mass and Energy indicators

Biorefinery	PMI (kg/kg)	Yield (kg/kg)	RI (%)	SGI (%)
I	3.89	0.26	100	21.25
II	1.46	0.68	100	61.89

Economic Dimension

Table 7. Value of investment indicators

Biorefinery	PBP (years)	TTR (1/years)	
Ι	6.24	0.81	
II	7.59	0.52	

Environmental Dimension

Table 8. Environmental indicators

Biorefinery	CF (kg-CO ₂ /kg raw material)	WF (m ³ /kg raw material)	
Ι	8.99	6.66	
II	0.77	1.38	

Research group in Chemical, Catalytic and Biotechnological Processes

Social Dimension

Table 9. Social indicators

	Biorefinery	M/L	Max M/L	
	Ι	0.72	0.95	
>	II	0.72	0.75	

<u>Case Study – Avocado-based biorefineries</u>

Step 5. Sustainability dimensions assessment

Technical Dimension

Table 6. Mass and Energy indicators – Normalized values

Biorefin ery	PMI (kg/kg)	Yield (kg/kg)	RI (%)	SGI (%)
Ι	0.94	0.22	1.00	0.21
II	0.99	0.66	1.00	0.62

Environmental Dimension

>	Bior efine ry	CF (kg-CO ₂ /kg raw material)	WF (m ³ /kg raw material)
	Ι	0.56	0.70
	II	0.99	0.98

Research group in Chemical, Catalytic and Biotechnological Processes

Economic Dimension

Table 7. Value of investment indicators – Normalized values

Biorefiner y	PBP (years)	TTR (1/years)
Ι	0.35	0.16
II	0.18	0.08

Social Dimension

 Table 9. Social indicators – Normalized values

Biorefinery	M/L	Max M/L
Ι	0.44	0.90
II	0.44	0.50

<u>Case Study – Avocado-based biorefineries</u>

Step 6. Index estimation

Equal weighting factors

Table 6. Sustainability Index

Biorefinery	SI (%)
Ι	53.74
II	60.04

Table 7. Scenarios for Sensitivity Analysis – Equal weighting

Analysis	Assessment	
4D	TEAS	
3D	TEA, TES, TAS, EAS	
2D	TE, TA, TS, EA, ES, AS	
1D	T, E, A, S	
Scenarios for Sensitivity Analysis – Equa		

Table 7. Scenarios for Sensitivity Analysis – Equal weighting

Research group in Chemical, Catalytic and Biotechnological Processes

Sensitivity analysis of the weighting factors

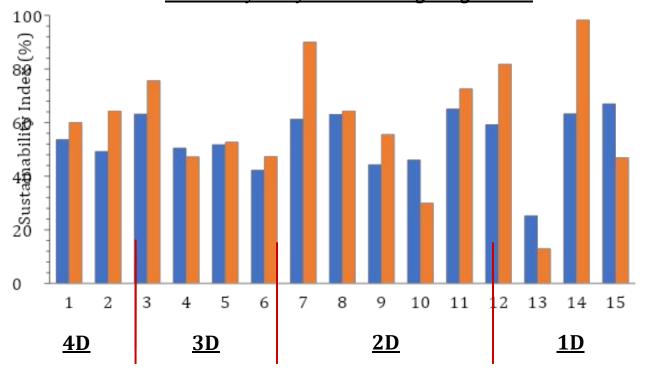


Figure 7. Sustainability Index change based on the assessment type

Step 7. Choose the best alternative: Scenario 2 – Small-AB2 (Guacamole) is the most sustainable option

5. Conclusions

- Specific country variables such as taxes, logistic performance, industrial competitiveness, and industrial intensity are key variables to be introduced into the biorefineries design and products portfolio definition.
- Estimating the sustainability index allows comparing different biorefinery configurations regardless of the plant location and process configuration.
- Regarding, the case study, the avocados upgrading to guacamole and biogas (to produce electricity) is the more sustainable option since the SI is higher in most of the equal weighting situations.
- To avoid the weighting problem the best alternative is to estimate all the possible values of the SI and show the results to the stakeholders and shareholders.

6. Acknowledgments

Minciencias

"Thanks to the research program entitled "Reconstrucción del tejido social en zonas posconflicto en Colombia" SIGP code: 57579 with the project entitled "Competencias" empresariales y de innovación para el desarrollo económico y la inclusión productiva de las regiones afectadas por el conflicto colombiano" SIGP code 58907. Contract number: FP44842-213-2018. Moreover, The call PROGRAMA NACIONAL PARA LAS MUJERES EN LA CIENCIA UNESCOL'ORÉAL-MINCIENCIAS-ICETEX

7. References

[1] Bello S, Méndez-Trelles P, Rodil E, Feijoo G, Moreira MT. Towards improving the sustainability of bioplastics: Process modelling and life cycle assessment of two separation routes for 2,5-furandicarboxylic acid. Sep Purif Technol 2020;233:116056.

https://doi.org/10.1016/j.seppur.2019.116056.

[2] Aristizábal-Marulanda V, Solarte-Toro JC, Cardona Alzate CA. Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia. Bioresour Technol Reports 2020;9. https://doi.org/10.1016/j.biteb.2020.100397.

[3] Nieder-Heitmann M, Haigh KF, Görgens JF. Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: Finding a sustainable solution for the South African sugar industry. J Clean Prod 2019;239. https://doi.org/10.1016/j.jclepro.2019.118039.

[4] Solarte-Toro JC, Cardona CA. Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspect , challenges and perspectives. Bioresour Technol 2021;340:125626.

https://doi.org/10.1016/j.biortech.2021.125626.

[5] Valente A, Iribarren D, Dufour J. Life cycle sustainability assessment of hydrogen from biomass gasification: A comparison with conventional hydrogen. Int J Hydrogen Energy 2019;44:21193–203. https://doi.org/10.1016/j.ijhydene.2019.01.105.

[6] Mahbub N, Oyedun AO, Zhang H, Kumar A, Poganietz WR. A life cycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass. Int J Life Cycle Assess 2019;24:881–99. https://doi.org/10.1007/s11367-018-1529-6.

[7] Costa D, Quinteiro P, Dias AC. A systematic review of life cycle sustainability assessment: Current state, methodological challenges, and implementation issues. Sci Total Environ 2019;686:774–87. https://doi.org/10.1016/j.scitotenv.2019.05.435.

[8] Alonso-Gómez L, Solarte-Toro JC, Bello-Pérez LA, Cardona-alzate CA. Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food Bioprod Process 2020;121:29–42. https://doi.org/10.1016/j.fbp.2020.01.005.

[9] UNEP. Guidelines for Social Life Cycle Assessment of Products. 2020.

[10] Ortiz-Sanchez M, Solarte-Toro JC, Cardona Alzate CA. A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour Technol 2021;325:124682.

https://doi.org/10.1016/j.biortech.2021.124682.

7. References

[11] Solarte-Toro JC, Ortiz-Sanchez M, Restrepo-Serna DL, Peroza Piñeres P, Pérez Cordero A, Cardona Alzate CA. Influence of products portfolio and process contextualization on the economic performance of small- and large-scale avocado biorefineries. Bioresour Technol 2021;342. https://doi.org/10.1016/j.biortech.2021.126060.

[12] Solarte-Toro J-C, Ortiz-Sánchez M, Cardona-Alzate CA. Environmental life cycle assessment (E-LCA) and social impact assessment (SIA) of small-scale biorefineries implemented in rural zones: the avocado (Persea Americana var. Americana) case in Colombia. Environ Sci Pollut Res 2022:1–20. https://doi.org/10.1007/s11356-022-20857-z.

[13] Crown-Machinery. Avocado oil 2022. https://crown-machinery.com/project/avocado-oil/ (accessed March 27, 2022).

[14] LOCHAMP. Animal feed 2022. https://www.lochamp.com/animal-feed-production-line.html (accessed March 27, 2022).

[15] Estrada M E, Cortés R M, Gil J. Guacamole powder: Standardization of the spray drying process. Vitae 2017;24:102–12. https://doi.org/10.17533/udea.vitae.v24n2a03.

[16] Martí L, Martín JC, Puertas R. A DEA-logistics performance index. J Appl Econ 2017;20:169–92.

https://doi.org/10.1016/S1514-0326(17)30008-9.

[17] González-Aguirre JA, Solarte-Toro JC, Cardona Alzate CA. Supply chain and environmental assessment of the essential oil production using Calendula (Calendula Officinalis) as raw material. Heliyon 2020;6. https://doi.org/10.1016/j.heliyon.2020.e05606.

[18] Aristizábal-Marulanda V, Solarte-Toro JC, Cardona Alzate CA. Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia. Bioresour Technol Reports 2020;9. https://doi.org/10.1016/j.biteb.2020.100397.

[19] Ortiz-Sanchez M, Solarte-Toro JC, Orrego-Alzate CE, Acosta-Medina CD, Cardona-Alzate CA. Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Convers Biorefinery 2020.

https://doi.org/10.1007/s13399-020-00627-y.

[20] Hernández H, Grassano N, Tübke A, Amoroso S, Csefalvay Z, Gkotsis P. The 2019 EU Industrial R&D Investment Scoreboard. Luxembourg: Publications Office of the European Union; 2020. https://doi.org/10.2760/04570.