

VALORISATION STRATEGIES OF SPENT COFFEE GROUND AS AN INGREDIENT FOR RUMINANTS

D. San Martin; J. Ibarruri; N. Luengo; J. Ferrer; A. Garcia-Rodriguez; I. Goiri; R. Atxaerandio; J. Zufía; E. Sáez de Cámara; B. Iñarra

The Life ECOFFEED project has received funding from the European Union under grant agreement n° LIFE19 ENV/ES/000186. The information and views set out in this 1st Advisory Board Meeting are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

NEW STRATEGIES FOR THE COFFEE BY-PRODUCTS RECOVERY AS A NEW RAW MATERIAL FOR ANIMAL FEED

PROJECT LOCATION: North of Spain (Basque Country and Navarre) and South of France (Aquitaine)

SCHEDULE: 01 / 09 / 2019 – 31 / 03 / 2024

CONSORTIUM:

Coordinator:

& TECHNOLOGY ALLIANCE

Partners:

© AZTI 2022. All rights reserved

OBJETIVES

General objective:

Develop, demonstrate and implement at real scale an **innovative and sustainable solution** for the recovery of **coffee by-products** and recovery for their use as an **ingredient in animal feed**.

Specific objectives:

- 1. Implement a value option for HORECA channel coffee grounds and Vending capsules as an ingredient for animal feed
 - \rightarrow \uparrow sustainability and competitiveness of the coffee producer and consumer sector.
- 2. Meet the growing demand for new raw materials for feed production and reduce dependence on the current market for raw materials.
 - \rightarrow \clubsuit sustainability and competitiveness of the feed sector

Challenge 6: Nutritional efficiency

Nutritional value of coffee grounds Nutritional efficiency tests: dairy cattle and sheep

Challenge 5: **Pellets**

Energy optimization of the drying process using pellets from coffee grounds

Stabilization of the coffee grounds for its suitability as a feed ingredient

- Natural coffee grounds
- Hydrolyzed coffee grounds

Challenge 4: Dehydration

IMPLEMENTATION AT REAL SCALE

Н

from coffee by-products to animal fee

...

Feed

production

Dairy cattle

& sheer

1. TECHNICAL SIZING

Sizing of the case study (north Spain - south France) Technical specifications of the necessary equipment

2. ECONOMIC ASSESSMENT (LCC)

15-year financial balance; Financial indicators & Economic sensitivity analysis

3. ENVIRONMENTAL ASSESSMENT (LCA)

Life Cycle Analysis → Acidification potential; Global warming, Eutrophication; Competition for land use

4. SOCIAL ASSESSMENT

Job creation and maintenance; Industry and consumer awareness; Contribution to the sustainability of the primary sector

5. BUSINESS MODEL

Value proposal; Investors; Road map; Replication to other EU regions

Waste

generation

Ingredient

production

Enzymatic Hydrolysis → Increased fiber digestibility

- Spent coffee ground (SCG) has high potential to be reused as secondary feedstuff for animal feed.
- However, its high lignin content limits its inclusion percentage in diets to no more than 10 % due to a decrease in digestibility.

An **enzymatic hydrolysis** process is proposed to maintain its properties while increasing digestibility

Enzymatic Hydrolysis → Increased fiber digestibility

> 1st Experimental trial

Pretreatment (15 min 121 °C)	Enzymes	OE	BJECTIVE
Yes	CTR - without enzyme		
No	1- Celuclast	\triangleright	Heat treatment for fibre degradation
	2- Ultimase		
	3- Viscozyme	\triangleright	Cellulolytic enzyme treatment for fibre
	4- Ultraflo		hydrolysis

RESULTS

1) PHYSICAL PRETREATMENT

• No significant effect of heat treatment in fibre degradation.

Enzymatic Hydrolysis → Increased fiber digestibility

> 1st Experimental trial

		_	
Pretreatment (15 min 121 °C)	Enzymes	OB	JECTIVE
Yes	CTR - without enzyme	-	
No	1- Celuclast	\triangleright	Heat treatment for fibre degradation
	2- Ultimase		
	3- Viscozyme	\triangleright	Cellulolytic enzyme treatment for fibre
	4- Ultraflo	_	hydrolysis

RESULTS

2) ENZYMES

- Viscozyme[®] and Celuclast [®] show the highest fibre degradation.
- However, all enzymes reduce (P<0.001) in vitro digestibility by 27-30%. Hypothesis?
 - 1. Hydrolysing solubilises nutritional compounds are lost when separating the liquid and solid fractions (necessary for cost-effective drying) $\rightarrow \uparrow \%$ fibre in the solid part.
 - 2. The intensity of the effect of enzymes is substantially \downarrow than the enzymatic action of animal rumen bacteria \rightarrow No effective improvement on the digestibility of the ingredient in the animal.

Enzymatic Hydrolysis → Increased fiber digestibility

> 1st Experimental trial

Pretreatment (15 min 121 °C)	Enzymes	OE	BJECTIVE
Yes	CTR - without enzyme		
No	1- Celuclast	\triangleright	Heat treatment for fibre degradation
	2- Ultimase		
	3- Viscozyme	\triangleright	Cellulolytic enzyme treatment for fibre
	4- Ultraflo		hydrolysis
	Pretreatment (15 min 121 °C) Yes No	Pretreatment (15 min 121 °C)EnzymesYesCTR - without enzymeNo1- Celuclast2- Ultimase3- Viscozyme4- Ultraflo	Pretreatment (15 min 121 °C)EnzymesOEYesCTR - without enzymeNo1- Celuclast2- Ultimase3- Viscozyme4- Ultraflo

CONCLUSIONS

- Inclusion of other physical treatments to improve the effectiveness of enzymes would be advisable.
- The effectiveness of other more effective enzymes in lignin digestion needs to be analysed.

Enzymatic Hydrolysis → Increased fiber digestibility

> 2nd Experimental trial

Pretreatment (15 min 121 °C)	Enzymas
Yes	Lacasse
No	Lacasse
Yes	Ultimase + Lacasse
	Ultimase +
Yes	Viscozyme
No	Without enzyme
Yes	Without enzyme

OBJECTIVE

- Heat treatment & Grinding for fibre degradation
- Cellulolytic enzyme treatment for fibre hydrolysis
- Lacasse[®] enzyme for lignin degradation

RESULTS

<mark>(<u>)</u> Z T</mark>

1) PHYSICAL PRETREATMENT

- Heat treatment
 - \checkmark Digestibility was not improved at any of the times tested
- Grinding
 - ✓ It improves in vitro digestibility by 25%, without increasing VFA production.
 - \checkmark It would improve the ruminal fermentation process

23.00 20.00 15.00 10.00 5.00 0.00 Ran material Presteat * ent.^{12/3} Presteat * ent

CHALLENGE 3

Enzymatic Hydrolysis → Increased fiber digestibility

> 2nd Experimental trial

Enzymas
Lacasse
Lacasse
Ultimase + Lacasse
Ultimase +
Viscozyme
Without enzyme
Without enzyme

OBJECTIVE

- Heat treatment & Grinding for fibre degradation
- Cellulolytic enzyme treatment for fibre hydrolysis
- Lacasse[®] enzyme for lignin degradation

RESULTS

2) ENZYMES

- Ultimase[®] + Viscozyme[®] show increased release of sugars
- Lacasse[®] decreases Polyphenols (possible oxidation)
- None of the enzymes or combinations used:
 - \checkmark Increases digestibility in vitro
 - ✓ Increases total VFA production
- All involve a loss of efficiency of the ruminal fermentative process

Enzymatic Hydrolysis → Increased fiber digestibility

> 2nd Experimental trial

Pretreatment (15 min 121 °C)	Enzymas
Yes	Lacasse
No	Lacasse
Yes	Ultimase + Lacasse
	Ultimase +
Yes	Viscozyme
No	Without enzyme
Yes	Without enzyme

OBJECTIVE

- Heat treatment & Grinding for fibre degradation
- Cellulolytic enzyme treatment for fibre hydrolysis
- Lacasse[®] enzyme for lignin degradation

CONCLUSIONS

- Grinding arises as an effective pretreatment to increase digestibility
- When coffee spent grounds are hydrolyzed, the liquid fraction is released when separating the liquid and solid fractions (necessary for cost-effective drying)
- Supplementing a typical dairy cattle ration with liquid fraction
 - \checkmark Decreases the digestibility (70 vs. 48%) of such a ration without reducing VFA production
 - \checkmark Improve the efficiency of the ruminal fermentation process and reduce protein degradation in the rumen
 - \checkmark The liquid fraction can be an alternative to commercial growth promoters

Enzymatic Hydrolysis → Increased fiber digestibility

> 3rd Experimental trial

Grinding	Hydrolysis	
Original sample (about 500µm)	Without any treatment	
Grinding 1 (about 250µm)	Reconstituted hydrolysate (solid + liquid fractions)	
Grinding 2 (about 100µm)	Solid fraction	
Flash dried sample		

OBJECTIVE

- > Effect of grinding, since in the previous design it improved ruminal digestibility
- Effect of hydrolysis when reconstituting the hydrolyzed sample (recovering the liquid fraction)

RESULTS

1) PHYSICAL PRETREATMENT

 Grinding improves the digestibility of coffee grounds: up to 65% of the improvement (P3)

Enzymatic Hydrolysis → Increased fiber digestibility

> 3rd Experimental trial

Grinding	Hydrolysis	
Original sample (about 500μm)	Without any treatment	
Grinding 1 (about 250µm)	Reconstituted hydrolysate (solid + liquid fractions)	
Grinding 2 (about 100µm)	Solid fraction	
Flash dried sample		

OBJECTIVE

- > Effect of grinding, since in the previous design it improved ruminal digestibility
- Effect of hydrolysis when reconstituting the hydrolyzed sample (recovering the liquid fraction)

RESULTS

2) ENZYMES

- When we hydrolyze, we still see a loss of digestibility.
- If we reconstitute the liquid and solid part, we recover the digestibility.

Enzymatic Hydrolysis → Increased fiber digestibility

> CONCLUSIONS

- **Spent Coffee Ground** is a by-product with a **high fibrous content** which makes it difficult to include as a digestible raw material in animal feed.
- The **hydrolysis process** could have been a **valuable strategy** to make the raw material components more accessible to the animals.
- However, the effect of releasing compounds of interest (sugars, polyphenols...) into the liquid medium during processing makes the resulting material less valuable.
- Furthermore, the effect of enzymes on the solid matter is neutralized by the enzymatic action of the ruminal bacteria.
- On the contrary, the **liquid fraction** can be an alternative to commercial **growth promoters**.
- The **heating pre-treatment is of no interest** for improving digestibility and therefore, increasing the percentage of inclusion of SCG in ruminant feeds.
- On the contrary, grinding is presented as the best technological alternative to improve the digestibility of spent coffee grounds in particular and the fermentative process in the rumen in general.

David San Martin dsanmartin@azti.es

© AZTI 2022. All rights reserved

@ecoffeed

from coffee by-products to animal feed

www.ecoffeed.azti.es

www.linkedin.com/groups/12468608/