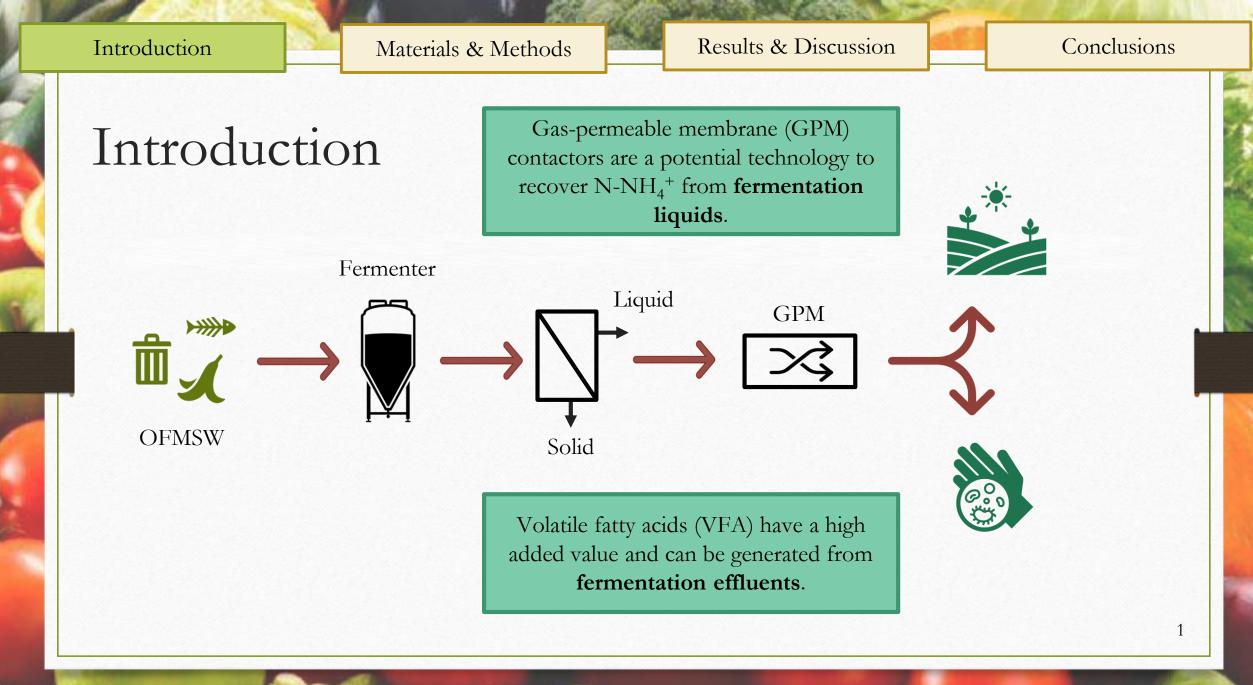
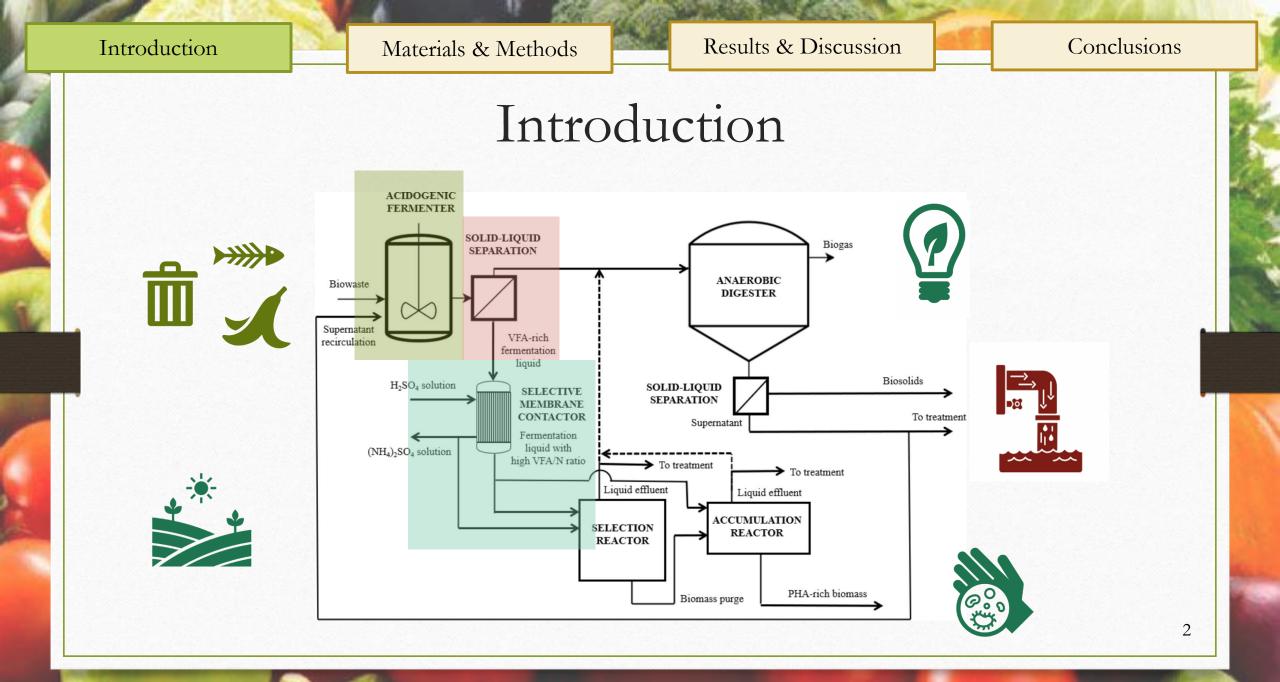
# Ammonia recovery from acidogenic fermentation effluents using a gas-permeable membrane

A. Serra-Toro<sup>1</sup>, S. Vinardell<sup>1</sup>, S. Astals<sup>1</sup>, J. Llorens<sup>1</sup>, J. Mata-Álvarez<sup>1</sup>, F. Mas<sup>2</sup>, J. Dosta<sup>1</sup>


 <sup>1</sup> Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, 08028, Spain
<sup>2</sup> Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain

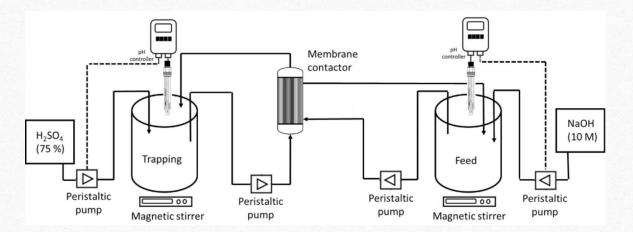



UNIVERSITAT DE BARCELONA

**CORFU 2022** 



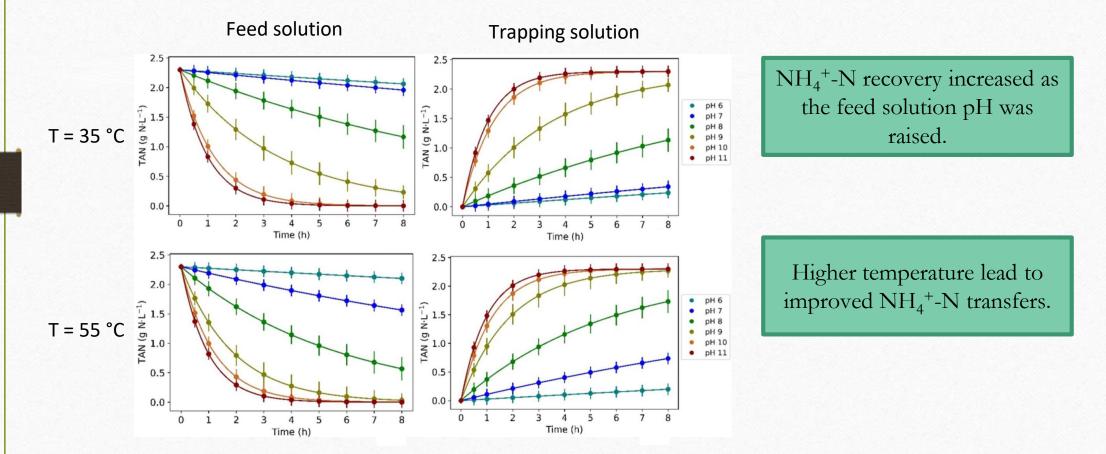





Results & Discussion

Conclusions

## Materials and Methods


Ammonia removal took place in a nanoperforated hollow fibre membrane contactor that put in contact the feed solution and the trapping acidic solution.



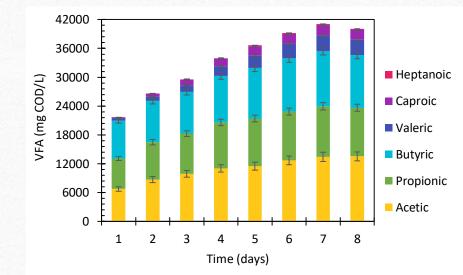
The **acidogenic fermentation** of OFMSW was carried out in a 30 L reactor and lasted 8 days.

| Feed solution | pH (-) | T ( <sup>o</sup> C) |
|---------------|--------|---------------------|
|               | 6.0    | 35                  |
|               | 7.0    | 35                  |
|               | 8.0    | 35                  |
| Synthetic     | 9.0    | 35                  |
| fermentation  | 10.0   | 35                  |
| liquid        | 11.0   | 35                  |
| (2.5 g N/L    | 6.0    | 55                  |
| 3.0 g HAc/L)  | 7.0    | 55                  |
|               | 8.0    | 55                  |
|               | 9.0    | 55                  |
|               | 10.0   | 55                  |
|               | 11.0   | 55                  |
| OFMSW         | 9.0    | 35                  |
| fermentation  | 10.0   | 35                  |
|               | 9.0    | 55                  |
| liquid        | 10.0   | 55                  |

#### Nitrogen recovery with synthetic solution

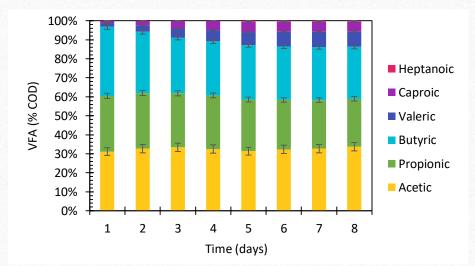


#### Nitrogen recovery with synthetic solution


| Exp.       | Т  | pН   | TAN recovery<br>at 8h | Average flux at 8h                     | K <sub>m</sub>                  |
|------------|----|------|-----------------------|----------------------------------------|---------------------------------|
|            | ٥C | -    | 0⁄0                   | g N·day <sup>-1</sup> ·m <sup>-2</sup> | m·s <sup>-1</sup>               |
| 1A         | 35 | 6.0  | 8                     | $2.5 \pm 0.3$                          | $(2.2 \pm 0.5) \cdot 10^{-8}$   |
| 1 <b>B</b> |    | 7.0  | 16                    | $4.3 \pm 0.6$                          | $(2.8 \pm 0.4) \cdot 10^{-8}$   |
| 1 <b>C</b> |    | 8.0  | 65                    |                                        | $(9.5 \pm 1.3) \cdot 10^{-8}$   |
| 1D         |    | 9.0  | 91                    | $62 \pm 10$                            | $(3.2 \pm 0.3) \cdot 10^{-7}$   |
| 1E         |    | 10.0 | 100                   | $115 \pm 16$                           | $(9.2 \pm 0.4) \cdot 10^{-7}$   |
| 1F         |    | 11.0 | 100                   | $138 \pm 17$                           | $(1.13 \pm 0.03) \cdot 10^{-6}$ |
| 2A         | 55 | 6.0  | 10                    | $2.8 \pm 0.3$                          | $(1.3 \pm 0.3) \cdot 10^{-8}$   |
| 2B         |    | 7.0  | 36                    | $10 \pm 2$                             | $(5.8 \pm 1.0) \cdot 10^{-8}$   |
| 2C         |    | 8.0  | 73                    | + 32 ± 5                               | $(1.9 \pm 0.1) \cdot 10^{-7}$   |
| 2 <b>D</b> |    | 9.0  | 99                    | 84 ± 11                                | $(5.9 \pm 0.5) \cdot 10^{-7}$   |
| <b>2</b> E |    | 10.0 | 100                   | $121 \pm 16$                           | $(9.3 \pm 0.3) \cdot 10^{-7}$   |
| 2F         |    | 11.0 | 100                   | $133 \pm 16$                           | $(1.15 \pm 0.04) \cdot 10^{-6}$ |

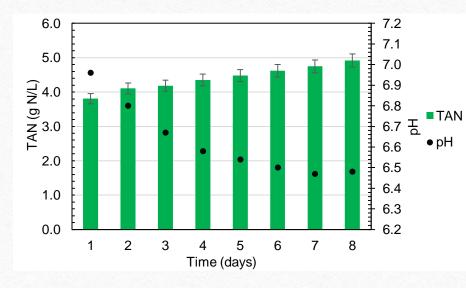
NaOH consumption decreased as the feed solution pH was raised.

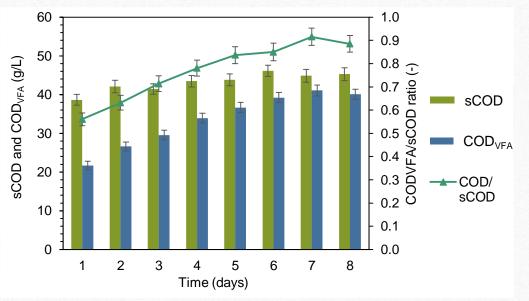
 $H_2SO_4$  consumption decreased as the feed solution pH was raised (minimum at pH 10).


The best operation pH was determined to be 10.

## Acidogenic fermentation

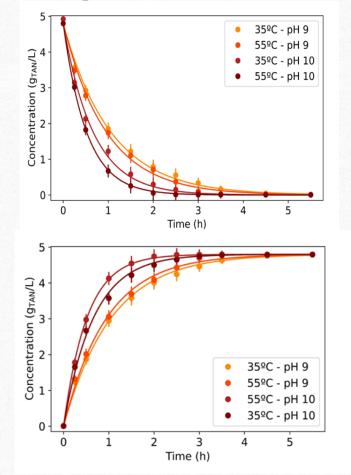



 $\begin{array}{c} {\rm VFA\ concentration} \\ {\rm reached\ 41\ g\ COD}_{\rm VFA}/{\rm L} \\ {\rm at\ the\ 7^{th}\ day.} \end{array}$ 

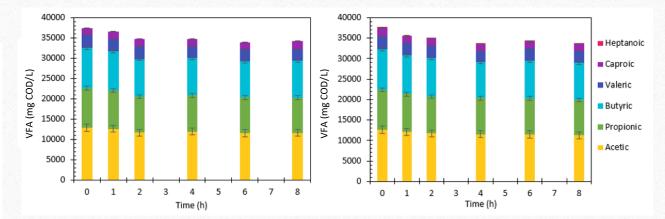





## Acidogenic fermentation


 $N-NH_4^+$  concentration reached 4.9 g N/L.





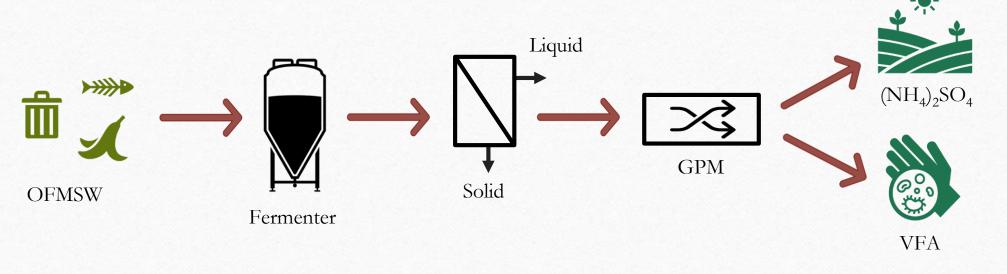

COD<sub>VFA</sub> increased due to the acidogenic fermentation.

#### Nitrogen recovery with fermentation liquid



The GPM allowed a complete recovery of  $N-NH_4^+$  with a minimum loss of VFA.




## Nitrogen recovery with fermentation liquid

| Exp. | Т  | pН   | TAN recovery<br>at 8h | Average flux<br>at 8h | K <sub>m</sub>                | Synthetic K <sub>m</sub>      |
|------|----|------|-----------------------|-----------------------|-------------------------------|-------------------------------|
|      | ٥C | -    | 0⁄0                   | g N∙day⁻¹∙m⁻²         | m·s <sup>-1</sup>             | m·s <sup>-1</sup>             |
| 3A   | 35 | 9.0  | 100                   | 78.4 ± 11.0           | $(2.8 \pm 6.0) \cdot 10^{-7}$ | $(3.2 \pm 0.3) \cdot 10^{-7}$ |
| 3B   |    | 10.0 | 100                   | $120.1 \pm 14.4$      | $(5.0 \pm 9.2) \cdot 10^{-7}$ | $(9.2 \pm 0.4) \cdot 10^{-7}$ |
| 3C   | 55 | 9.0  | 100                   | 91.0 ± 12.7           | $(3.3 \pm 6.3) \cdot 10^{-7}$ | $(5.9 \pm 0.5) \cdot 10^{-7}$ |
| 3D   |    | 10.0 | 100                   | $138.8 \pm 16.7$      | $(5.4 \pm 5.7) \cdot 10^{-7}$ | $(9.3 \pm 0.3) \cdot 10^{-7}$ |

N-NH<sub>4</sub><sup>+</sup> transfer decreased when we operated with fermentation liquid.

The K<sub>m</sub> improve from pH 9 to 10 were lower in fermentation liquid.

- The **N-NH<sub>4</sub><sup>+</sup> can be completely recovered** from fermentation effluents at 35 and 55 °C and pH values above 9 efficiently.
- The process produce a (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> solution suitable as fertiliser and a rich VFA liquid free of N-NH<sub>4</sub><sup>+</sup>.



#### Bioresource Technology 356 (2022) 127273



Contents lists available at ScienceDirect

#### Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Ammonia recovery from acidogenic fermentation effluents using a gas-permeable membrane contactor



A. Serra-Toro<sup>a</sup>, S. Vinardell<sup>a</sup>, S. Astals<sup>a</sup>, S. Madurga<sup>b</sup>, J. Llorens<sup>a</sup>, J. Mata-Álvarez<sup>a, c</sup>, F. Mas<sup>b</sup>, J. Dosta<sup>a, c, \*</sup>

<sup>a</sup> Chemical Engineering and Analytical Chemistry Department. University of Barcelona, Barcelona, Catalonia, Spain

<sup>b</sup> Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Catalonia, Spain

<sup>c</sup> Water Research Institute, University of Barcelona, Barcelona, Catalonia, Spain

https://doi.org/10.1016/j.biortech.2022.127273

#### Thank you for your attention













andreuserraitoro@ub.edu