

ANAEROBIC CO-DIGESTION OF AGRICULTURAL RESIDUES PRODUCED IN SOUTHERN GREECE DURING SPRING/SUMMER SEASON

<u>Vasiliki P. Aravani¹</u>, Konstantina Tsigkou², Michael Kornaros³, Vagelis G. Papadakis⁴

¹Environmental Engineer, PhD Candidate, Department of Environmental Engineering, University of Patras, Greece ²Chemist, PhD in Chemical Engineering, Department of Chemical Engineering, University of Patras, Greece

³Professor, Department of Chemical Engineering, University of Patras, Greece

⁴Professor, Department of Environmental Engineering, University of Patras, Greece

INTRODUCTION

Increasing of energy utilization by using conventional fuels

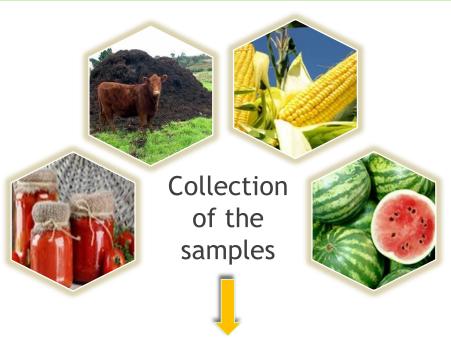
renewable energy sources such as biomass

Greece: high biomass potential

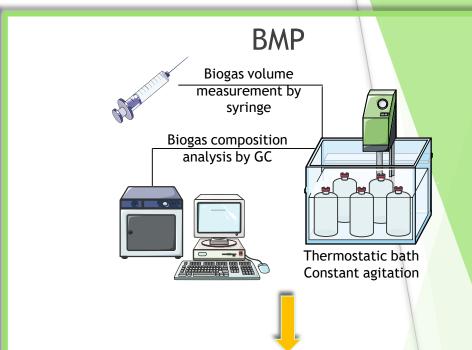
Anaerobic digestion (AD) is one of the most environmentally friendly technologies, able to convert organic wastes to valuable energy sources.

AIM OF THE STUDY

AD: well-known biological process that has been investigated for few decades


Greece: lack of experimental knowledge on the valorization of locally available substrates

performance of anaerobic co-digestion experiments in lab-scale valorizing the optimum Southern Greece spring/summer mixture that resulted from conducting Biochemical Methane Potential Assays (BMP) in previous study of our research team



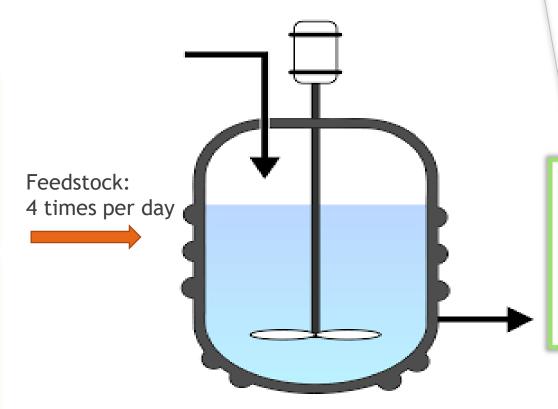
MATERIALS AND METHODS (1/2)

From the region of Western Greece. Storage at the freezer at -18°C.

developed to determine the maximum methane potential of a given organic substrate during its anaerobic decomposition

The anaerobic sludge, which was used as inoculum for the experiments, was obtained from a biogas plant in Messolonghi (Western Greece).

MATERIALS AND METHODS (2/2)

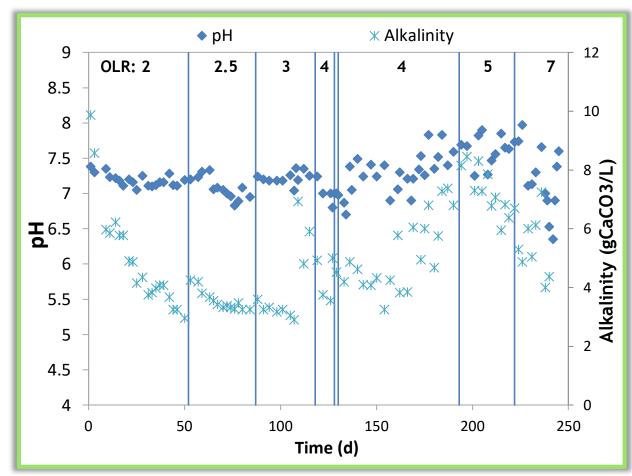

Southern Greece (spring/summer)

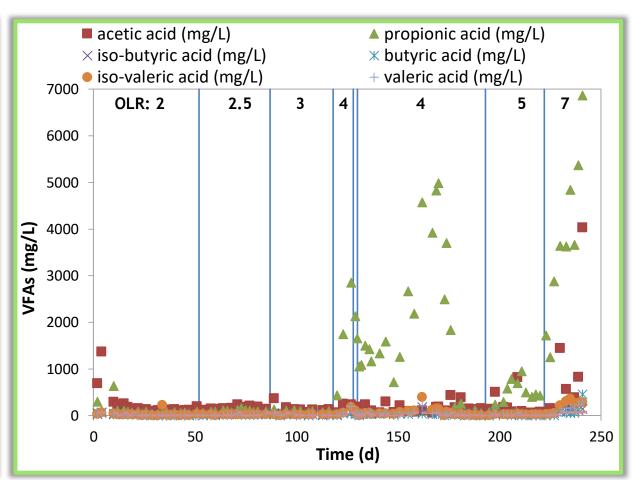
pH, alkalinity, TS, VS, TSS, VSS, COD, CH, VFA, CH₄, biogas

The biogas composition analysis was determined by a gas chromatographer with a thermal conductivity detector (TCD), while the physicochemical parameters were measured according to the "Standard Methods for the Examination of Water and Wastewater".

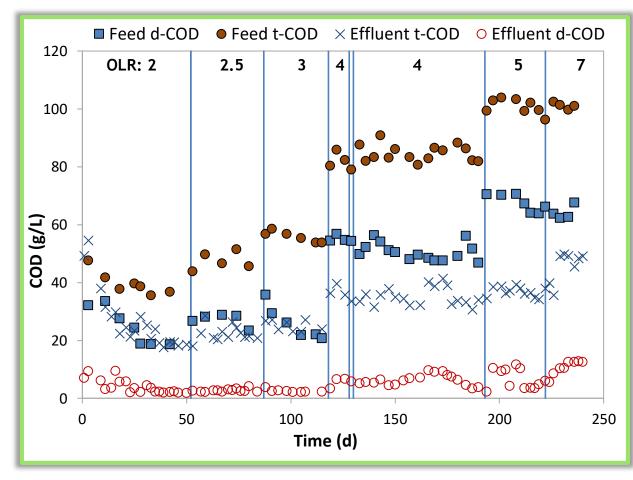
PERFORMANCE OF ANAEROBIC CO-DIGESTION REACTOR

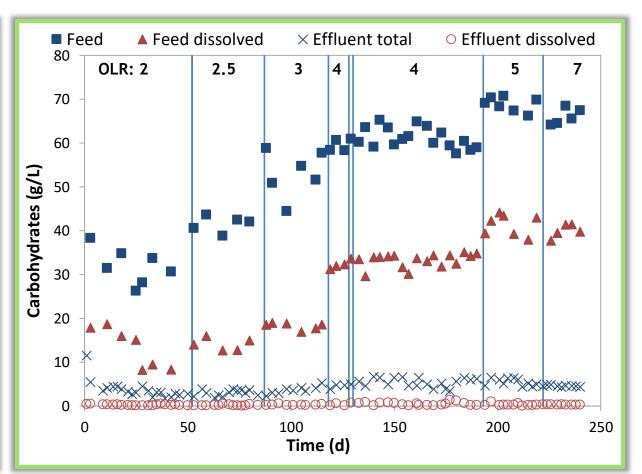
- □ One mesophilic single-stage continuous anaerobic digestion system with operational volume of 0.75 L
- □ Initial hydraulic retention time (HRT): 20 days
- □ Tested organic loading rate (OLR): 2-7 g COD/(L·d)
- □ The OLR was further increased after the system reached steady state conditions
- □ After reaching the maximum OLR, the HRT was reduced


MIXTURE (FEEDSTOCK) CHARACTERISTICS

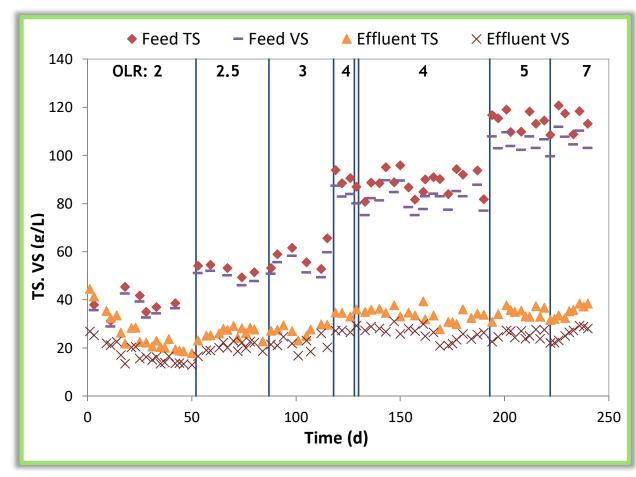

OLR (g COD/ (L·d))	рН	t-COD (g/L)	TS (g/L)	VS (g/L)	Humidity (%)	t-CH (g COD/L)	TKN (g/L)	Proteins (g/L)	NH ₃ -N (g/L)	Fats and oils (g/L)	t-P (g/L)	Phenols (g/L)
2	5.26	39.65	38.13	35.71	96.19	34.08	1.04	6.51	0.18	1.05	1.03	0.14
2.5	5.31	47.43	52.55	49.43	94.75	44.32	1.30	8.14	0.22	1.31	1.29	0.17
3	5.20	55.82	57.96	54.20	94.20	56.62	1.56	9.77	0.27	1.58	1.55	0.21
4	4.90	83.02	88.22	81.92	91.18	65.09	2.08	13.02	0.35	2.10	2.07	0.28
5 (without dilution)	4.92	100.79	112.97	104.19	88.70	70.17	2.60	16.28	0.44	2.63	2.59	0.35

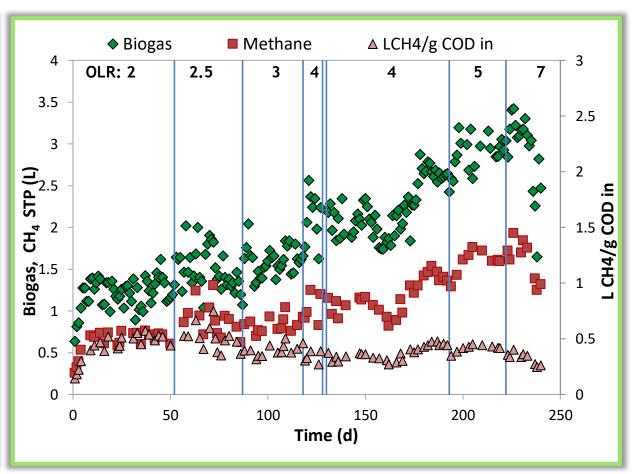
RESULTS (1/4)





RESULTS (2/4)





RESULTS (3/4)

RESULTS (4/4)

Run	Southern Greece (spring/summer)				
OLR (g COD/(L·d))	5				
HRT (d)	20				
рН	7.61 ± 0.22				
t-COD Removal (%)	63.93 ± 1.60				
t-CH Removal (%)	91.79 ± 1.34				
CH ₄ in Biogas (%)	54.86 ± 1.96				
L CH ₄ /(L _R ·d)	2.12 ± 0.19				
L biogas/(L _R ·d)	3.85 ± 0.26				

Mean values of the optimum scenario of the methanogenic reactor

CONCLUSIONS

- The reactor operated successfully at OLR 2, 2.5, 3, 4 and 5 g COD/($L \cdot d$).
- At OLR 7 g COD/(L·d) and HRT 15 d VFA accumulation and pH decrease (<7) were observed resulting to methane production drop.</p>
- The system's efficient operation paved the way for residual biomass treatment in single one-stage reactors, without substrate dilution, at high OLRs.

FUTURE WORK

- Comparison of experimental results with predictions of mathematical model of anaerobic digestion
- Life Cycle Assessment (LCA) of the process
- Technoeconomic analysis

AKNOWLEDGEMENTS

- ► This work has derived and financed from project SYNAGRON, a joint RT&D project under Greece China Call for Proposals launched under the auspices of the Ministry of Science and Technology (MOST) of the People's Republic of China and the Ministry of Development & Investments/General Secretariat of Research and Technology (GSRT) of the Hellenic Republic.
- ► Takes place at the Laboratory of Biochemical Engineering and Environmental Technology at University of Patras

THANK YOU FOR YOUR ATTENTION

Contact email: vasiliki.arav@gmail.com

