

Bioenergy recovery from sewage sludge in wastewater treatment plant : Machine learning and heterogeneous datasets

Anaerobic Digestion II, Room 1 Session XIII

16:30 pm – 16:45 pm , 16 June 2022

By Dr. Thomas T.H. TSUI Research Fellow

Outline

- Background & Challenges
- Approach & Methodology
- Findings & Discussions
- Summary

Acknowledgement:

This research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme

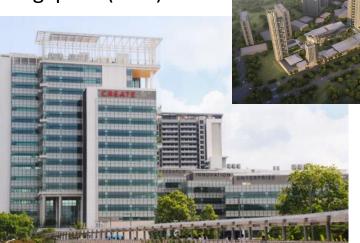
Energy and Environmental Sustainability Solutions for Megacities (E2S2-CREATE)

E2S2-CREATE:

To understand and model for policy formulation and technology development, while reaching down from the city-wide model and developing deeper into the implementations at solving specific urban megacity challenges.

E2S2-CREATE Directors:

Prof. Yinghong PENG, Shanghai Jiao Tong University (SJTU) Prof. Yen Wah TONG, National University of Singapore (NUS)



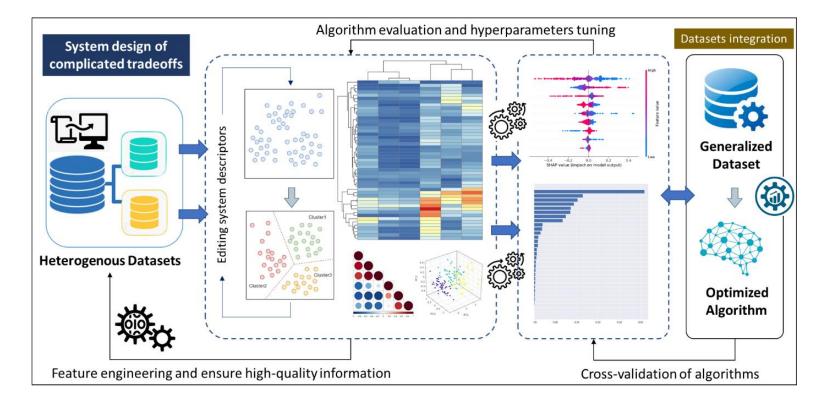
NUS tional University of Singapore

NUS

Background

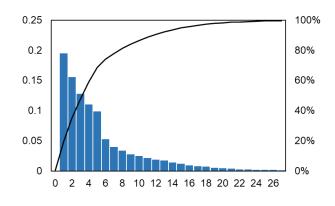
- Urban waste management
 - High disposal costs and carbon emissions
 - Circular economy and a net-zero green future
- Urban Constraints and Challenges
 - Fast-changing needs and complexity
 - Space, economic factors, etc.
- Bioenergy recovery from recalcitrant biomass
 - E.g. Sewage sludge, Agricultural waste, Food waste (sometimes)
 - Complex structure and barriers to the penetration of hydrolytic enzymes
 - Pretreatment needs (e.g. thermal, chemical, electric methods)
 - Enhanced destruction; Reduced digestate volume; Compact digester

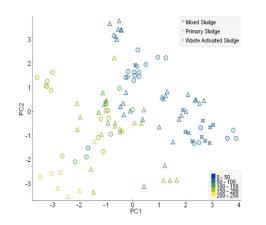
Challenges


- Technological constraints for system optimization
 - Slow experiments, labor intensive, and highly expensive
 - Tradeoffs with high-dimension of variables
 - Difficult to fully explore/ comprehend
- Conventional performance simulation
 - Time consuming; Unable to quickly handle increasing parameters
 - More confined to mechanistic derivation (e.g. ADM)
- A unified computational framework (to tackle prediction needs)
 - Artificial intelligence techniques in recent years; Fast-growing capacity
 - Multiple use of algorithms for compiling heterogenous datasets

Approach & Methodology

The experimental data were collected from publications from 1990 to 2021, and there is a total of 236 experimental references selected for the architectural computation.





Findings & Discussions

Main difficulties ۲

AD VS removal	-0.07833	-0.02451	0.196619	-0.03682	-0.02229
Type Secondary Sludge	-0.07678	0.042612	0.006286	-0.01586	-0.02507
Pretreatment Temperature	-0.06618	-0.22009	0.535018	-0.1591	-0.05858
I TN after	-0.05388	-0.02363	0.060836	-0.03356	-0.01898
Pretreatment type=Ferrate + FNA	-0.03671	0.133421	-0.00303	0.015114	-0.09595
Chemical Species=K2FeO4 +FNA	-0.03671	0.133421	-0.00303	0.015114	-0.09595
AD Temperature	-0.03172	0.039233	0.026966	0.161737	0.901393
Chemical Species=CaO2	-0.03003	0.001561	-0.02148	0.038327	-0.0088
Pretreatment pH	-0.0252	-0.40318	0.274206	-0.34327	0.118492
Chemical Species=K2FeO4+KOH	-0.02352	0.012167	0.013781	0.002821	0.015155
Pretreatment Duration	-0.01673	0.004901	-0.40769	-0.00734	0.161547
Pretreatment type=Alkali	-0.01247	-0.15805	0.073952	-0.16161	0.037584
I SCOD after	-0.00766	0.019144	0.075222	0.03747	0.174056
Pretreatment type=Alkali, 2 stage Acidogenic	-0.00677	-0.00903	0.002891	-0.00352	0.005123
I VS/TS after	-0.00653	-0.00576	-0.02064	0.021541	-0.00639
I VS after	-0.00614	-0.00402	-0.01615	0.023149	-0.00648
Reactor Type=Batch	-0.00279	0.009025	0.0046	0.025149	-0.00229
Chemical Species=NaOH	-0.00178	-0.21056	0.100774	-0.13034	0.01337
Chemical Species=KOH	-0.00071	-0.00488	0.007645	-0.00165	0.001909
Primary Dosage	-0.00012	0.001054	0.001139	0.000813	0.000567
Chemical Species=Na2SO3	0.000695	0.038985	-0.01482	-0.01121	0.049614
Pretreatment type=Sulfite	0.000695	0.038985	-0.01482	-0.01121	0.049614
Pretreatment type=Ferrate	0.000828	0.001411	0.000233	-0.00425	0.005431
Chemical Species=K2FeO4	0.000828	0.001411	0.000233	-0.00425	0.005431
Reactor Type=Semi Continuous	0.002792	-0.00903	-0.0046	-0.02515	0.002295
I_TS_after	0.008254	0.038941	0.124072	0.023693	-0.00585
Chemical Species=Mixed Alkali	0.011337	0.003643	0.015427	-0.02338	-0.02543
TN_before	0.012384	-0.0312	-0.02166	-0.00794	-0.04306
Chemical Species=CaClO2	0.025476	0.030994	-0.0393	-0.05091	0.046503
SCOD_before	0.028995	-0.2342	0.004064	0.098317	0.149508
AD_control_biomethane	0.0404	-0.40142	-0.45113	-0.07892	-0.02577
Chemical Species=Nitrous Acid	0.05442	-0.00674	-0.05923	0.165478	-0.00181
Pretreatment type=Acid	0.05442	-0.00674	-0.05923	0.165478	-0.00181
AD_pretreatment_biomethane	0.057247	-0.38903	-0.38331	-0.20692	-0.08543
Type_Sludge_Mixture	0.076782	-0.04261	-0.00629	0.015857	0.025073
VS/TS before	0.087726	-0.395	0.065531	0.082016	0.118826
TS_before	0.326067	-0.16971	0.114756	0.474176	-0.1028
VS_before	0.34062	-0.24285	0.112754	0.480299	-0.10467
AD_Pretreated_Duration	0.487635	0.127419	0.012606	-0.30699	0.088436
AD_Control_Duration	0.488059	0.124814	0.0122	-0.30783	0.086278
HRT/SRT	0.499658	0.165422	0.019729	-0.10075	-0.01299
components	PC1	PC2	PC3	PC4	PC5
variance	0.20843	0.159289	0.145843	0.111938	0.069103

•	Final	prediction	performance
---	-------	------------	-------------

Scope	XGBoost				
	Prediction accuracy	Probabilities of advantaged prediction against others			
	R ²	kNN	SVM	NN	
Thermal dataset	0.929	0.901	0.854	0.810	
Chemical dataset	0.903	0.953	0.972	0.939	
Generic algorithm	0.878	0.969	0.908	0.992	

Summary

- A computational approach
 - to deal with prediction complexity & accuracy
 - to encounter dynamic changes in urban environments
- Experiment-derived simulation with proven accuracy
- A generic algorithm with transferable and growth potentials
- Next: Integration with other artificial intelligence techniques
 E.g. Packaged programming for automated data analytics

Thank you!

112211

州協設新口口。

