

European Union European Regional Development Fund

INNOVATION

CORFU 2022

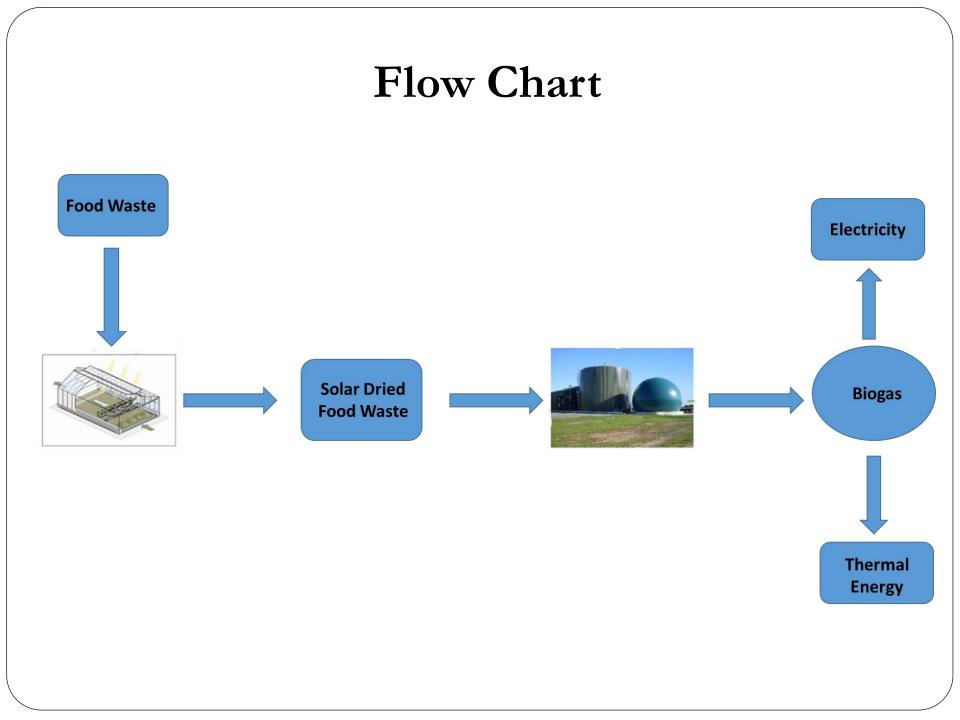
9th International Conference on Sustainable Solid Waste Management

Improving Anaerobic Co-digestion of Sewage Sludge with Solar Dried Food Waste

N. Papastefanakis, A. E. Maragkaki, M. Fountoulakis, C. Tsompanidis, T. Manios

Laboratory of Natural Resources, Management & Agricultural Engineering Hellenic Mediterranean University, Greece

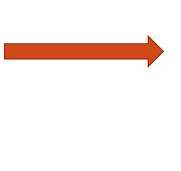
Corfu, June 2022


Innovation & Aim

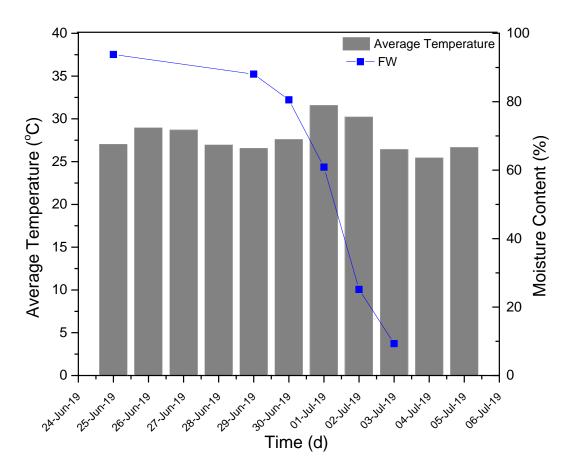
The innovation of this work is the use of solar drying as a pretreatment step for food waste stabilization prior to use in anaerobic digesters. As a result, the solar dried materials will have reduced volumes and weights and could be stored for prolonged periods.

Main Aim:

The use of dried material in small concentrations in order to improve biogas production in existing digesters at Wastewater Treatment Plants which operate only with sewage sludge


Solar Drying Process

Greenhouse Solar Drying Unit



Solar Dried Material

Solar Drying

- The experiment took place during summer (June)
- The examined wet materials were dried in far **less than 2 weeks**
- The moisture content decreased from 93.8% to 9.3% on the 9th day

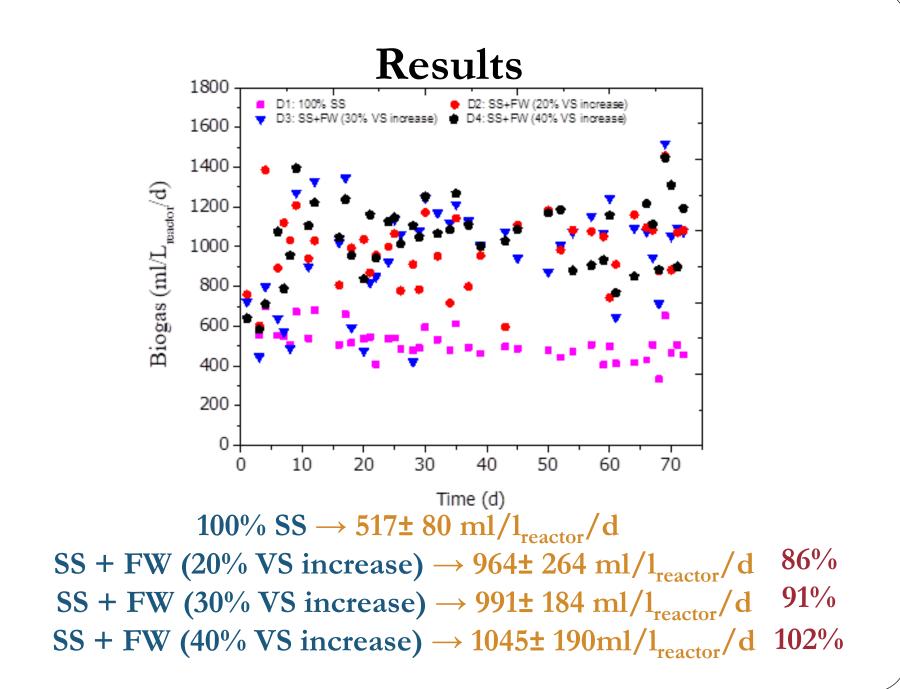
Solar Drying

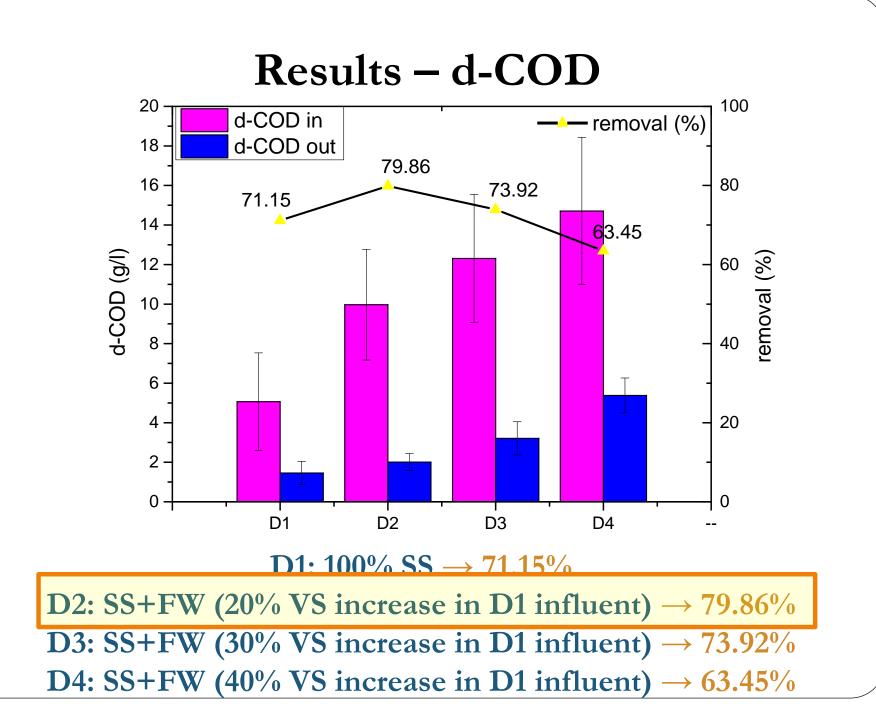
Composition of food waste (FW) before and after the solar drying process

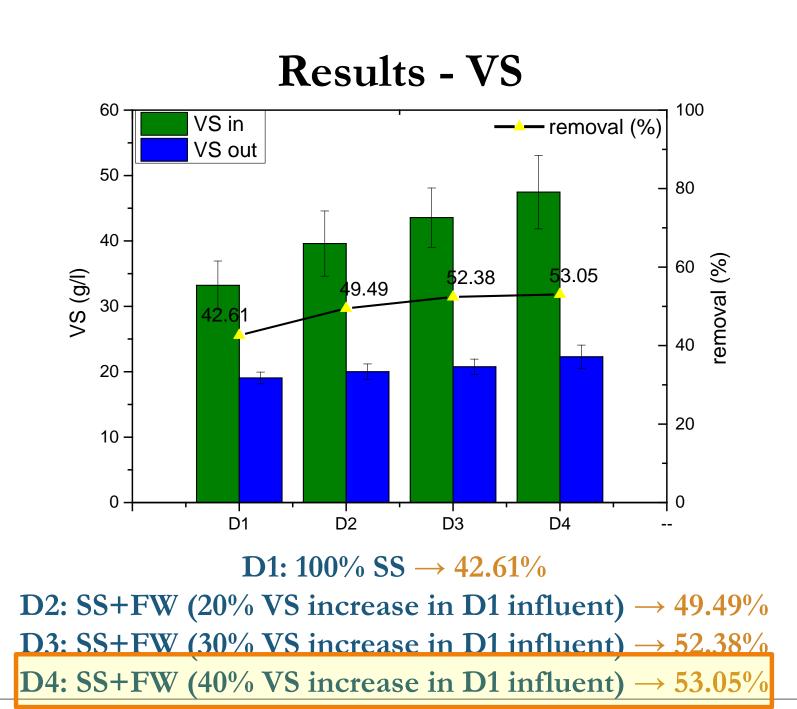
Parameters	FW (Before solar drying)	FW _{dry} (After solar drying)	Decrease
pН	5.0 ± 0.2	4.8 ± 0.1	4 %
VS (g/kg)	945.5 ± 0.9	831 ± 0.6	12%
TOC (g/kg)	614.3 ± 29.8	578.7 ± 36.9	6%
TKN (g/kg)	35.9 ± 1.8	34.8 ± 0.2	3%

Experimental procedure

- ✓ 4 type of feedstock:
- **D1:** 100% sewage sludge (SS)(v/v)
- ✤ D2: SS + FW (20% increase of VS in D1 influent)
- ✤ D3: SS + FW (30% increase of VS in D1 influent)
- D4: SS + FW (40% increase of VS in D1 influent) Mesophilic AD, 37°C, HRT = 24 days
- ✓ Influent & effluent samples analyzed TS, VS, pH, TCOD, d-COD and methane content in biogas


Digester number	Digester working volume (L)	HRT (days)	Time (days)	Feedstock	OLR (kg VS m ⁻³ d ⁻¹)
1	3	24	1 – 72	SS (100%)	1.38
2	3	24	1 – 72	SS+FW (20%VS increase)	1.65
3	3	24	1 – 72	SS+FW (30%VS increase)	1.82
4	3	24	1 – 72	SS+FW (40%VS increase)	1.98


Lab scale digester o


Feedstock

Characteristics of experimental materials as feedstock

Parameters	D1	D2	D3	D4
рН	6.1 ± 0.3	5.9 ± 0.2	5.9 ± 0.2	5.8 ± 0.3
TS (g/L)	47.6 ± 7.0	55 ± 7.6	60.9 ± 8.6	65.6 ± 9.4
VS (g/L)	33.2 ± 3.7	39.6 ± 5	43.6 ± 4.5	47.5 ± 5.6
TCOD (g/L)	57.6 ± 12.6	72.9 ± 12.6	74.9 ± 13.9	78.0 ± 17.2
d-COD (g/L)	5.1 ± 2.5	10 ± 2.8	12.3 ± 3.2	14.7 ± 3.7
TKN (g/L)	1.9 ± 0.1	2.4 ± 0.3	2.6 ± 0.2	2.5 ± 0.4

Conclusions

✓ Solar drying process could be used as a pretreatment step for food waste stabilization prior to use in anaerobic digestion.

- ✓ The process had small effect on pH, TKN and TOC (4%, 6% and 3% respectively) and bigger effect on VS (12% decrease)
- ✓ Co-digestion process of sewage sludge with a small amounts of dried FW can be a promising perspective in existing wastewater treatment plants
- ✓ After the supplementation of dried FW in the feed compared to sewage sludge the biogas production is improved by 1.8 2 times

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Action 1.b.2 \"Business Partnerships with Research and Dissemination Organizations, in sectors of RIS3Crete\", of the Operational Program \"Crete\" 2014 – 2020 (project code: KPHP1-0028938).

Thank you for your attention

Laboratory of Natural Resources, Management & Agricultural Engineering Hellenic Mediterranean University, Greece

European Union European Regional Development Fund

