

CORFU 2022

9th International Conference on Sustainable Solid Waste Management Corfu, Greece, 15 - 18 JUNE 2022

Pre-treatment of sewage sludge to enhance methane production: optimal technology's evaluation through continuous reactor operation

G.C. Mitraka, K.N. Kontogiannopoulos, A.I. Zouboulis, P.G. Kougias

Sewage sludge floc structure

- Microbial aggregates
- Organic substances
- Inorganic particles
- Bound water
- Refractory cell walls
- Extracellular Polymeric Substances (EPS)

9 June 2022 | Slide 3

Pre-treatment's beneficial aspects

- Rupture of sludge flocs
 - Particle size reduction
 - Increased surface area
 - Enhanced hydrolysis
- Rupture of EPS and cell walls
 - Release of intracellular organic substances
 - Increased bioavailability

✓ Enhanced AD efficiency
✓ Increased Biogas Production

Development of A Green Method

Supercritical Carbon dioxide Explosion (SCE)

Optimization

Conventional **Pre-treatments**

Stirred Reactors

Process Monitoring

Biochemical parameters evaluation

Optimum conditions Combined with SCE or as determination

standalone procedures

Two optimal methods' evaluation

Principle of action

- Critical temperature (Tc=31,7 °C) and pressure (Pc=72,9 atm)
- Properties similar to that of liquid and gas
- Penetration of solvent in the micropores of sludge matrix and cell walls
- Reaction chamber decompression → abrupt expansion of solid surface
- Increase of sludge's floc structure accessibility
- Organic substances' increased bioavailability

Aim: Optimum conditions determination for sludge pre-treatment with SCE \rightarrow maximize methane production

Optimization based on a two-step procedure

1st set of experiments

2nd set of experiments

Screening among the factors examined

Optimization of significant factors

<u>1st set of experiments → Screening</u>

Factors

- 1. Temperature, X_A (35 & 125 °C)
- 2. Pressure, X_B (150 & 250 bar)
- 3. Time, X_C (10 & 120 min)
- 4. Decompression speed, X_D (fast & slow)

<u>Response</u>

1. Methane yield, Y₁

	Factors			
Run	XA	X _B	Xc	XD
	(°C)	(bar)	(min)	
1	35	150	10	Fast
2	125	150	10	Slow
3	35	250	10	Slow
4	35	250	10	Slow
5	35	150	120	Slow
6	125	150	10	Fast
7	35	150	120	Slow
8	35	150	120	Fast
9	35	250	10	Fast
10	35	150	10	Slow
11	35	150	10	Slow
12	125	250	120	Fast
13	125	150	120	Fast
14	35	150	10	Fast
15	125	250	10	Slow
16	125	250	10	Fast
17	35	250	120	Slow
18	35	250	10	Fast
19	125	250	120	Fast
20	125	150	120	Slow
21	125	150	10	Slow
22	125	250	120	Slow
23	35	250	120	Slow
24	125	250	120	Slow
25	35	250	120	Fast
20	125	150	10	Fast
27	30	150	120	Fast
20	120	150	120	Slow
29	120	250	10	SIOW
30	120	250	120	Fast
32	35	250	120	Fast Fast
26 27 28 29 30 31 32	125 35 125 125 125 125 35	150 150 250 250 150 250	10 120 120 10 10 120 120	Fast Fast Slow Slow Fast Fast Fast

Experimental Procedure for SCE optimization

Design matrix – Obtained Response's values

Factors					Response
Run	X _A	X _B	Xc	X _D	Methane yield (mL
	(°C)	(bar)	(min)		CH₄/gVS) `
1	35	150	10	Fast	238
2	125	150	10	Slow	305
3	35	250	10	Slow	275
4	35	250	10	Slow	296
5	35	150	120	Slow	273
6	125	150	10	Fast	270
7	35	150	120	Slow	253
8	35	150	120	Fast	233
9	35	250	10	Fast	255
10	35	150	10	Slow	297
11	35	150	10	Slow	277
12	125	250	120	Fast	309
13	125	150	120	Fast	305
14	35	150	10	Fast	239
15	125	250	10	Slow	273
16	125	250	10	Fast	249
17	35	250	120	Slow	259
18	35	250	10	Fast	267
19	125	250	120	Fast	303
20	125	150	120	Slow	298
21	125	150	10	Slow	287
22	125	250	120	Slow	273
23	35	250	120	Slow	258
24	125	250	120	Slow	281
25	35	250	120	Fast	248
26	125	150	10	Fast	265
27	35	150	120	Fast	238
28	125	150	120	Slow	291
29	125	250	10	Slow	280
30	125	250	10	Fast	252
31	125	150	120	Fast	280
32	35	250	120	Fast	252

Screening among the factors examined

9 June 2022 | Slide 12

1. Temperature, X_A (70 - 125 °C) 2. Time, X_C (10 - 60 min)

- Pressure = 150 bar
- Slow decompression

Design matrix - Optimization

_	Factors		Response
Run -	X _A (°C)	X _C (min)	Methane yield (mL CH ₄ /gVS)
1	70	60	292
2	97.5	10	296
3	125	35	299
4	125	60	291
5	125	60	297
6	70	10	272
7	70	35	268
8	97.5	35	274
9	97.5	35	279
10	70	10	270
11	97.5	60	270
12	97.5	35	282
13	125	35	290
14	70	35	268
15	125	10	305
16	70	60	290
17	125	10	311
18	97.5	10	295
19	97.5	60	276

Response Surface and Contour Plot

Effect of main factors (temperature, °C; and time, min) on methane yield

Desired Space and selected optimum conditions

SCE combined with thermal and chemical methods

Combined pre-treatments – Methane yield

Waste·Management·Bioprocessing·La

9 June 2022 | Slide 17

	Thermal Hydrolysis					
1	45°C for 48 h and then 55°C for extra 48 h					
2	45°C for 72 h and then 55°C for extra 72 h					
3	45° C for 72 h and then 55° C for extra 72 h under 0.5 bar of CO ₂ pressure					
4	45° C for 72 h and then 55° C for extra 72 h under 1.0 bar of CO ₂ pressure					
5	90° C for 3 h					
6	90°C for 3 h under 0.5 bar of CO ₂ pressure					
7	90° C for 3 h under 1 bar of CO ₂ pressure					
Alkaline Hydrolysis						
8	NaOH 2% v/v					
9	NaOH 4% v/v					
Thermochemical pre-treatments						
10	NaOH 4% v/v , 45° C for 72 h and then 55° C for extra 72 h $$					
11	NaOH 4% v/v , 45° C for 72 h and then 55° C for extra 72 h, under 0.5 bar of CO_2 pressure					
12	NaOH 4% v/v , 45° C for 72 h and then 55° C for extra 72 h, under 1 bar of CO_2 pressure					
13	NaOH 4% v/v and 90° C for 3 h, under 0.5 bar of CO_2 pressure					
14	NaOH 4% v/v and 90° C for 3 h, under 1 bar of CO_2 pressure					

All pre-treatments – Statistically significant differences

Significant incremental changes

Significant Incremental Changes

Samples

Optimum pre-treatments

Ongoing ...

- 3 CSTRs
 - raw sludge
 - Pre-treated sludge (2 optimal methods)
- Mesophilic Conditions (37 ± 2° C)
- 3 periods → Increasing Organic Loading Rate (OLR)
- Biochemical parameters x2/week
- Microbial consortium monitoring

- \checkmark The model developed was effective in predicting the response's value with good accuracy.
- \checkmark Supercritical CO₂ Explosion is effective for sewage sludge pre-treatment.
- ✓ The use of supercritical CO₂ as an alternative green reactant/solvent for the pre-treatment of sludge is scientifically valid.
- ✓ A significant increment of 8.7% was observed in methane yield under optimum conditions.
- ✓ Among the additional methods examined, thermal pre-treatment at 45° C for 48h and then at 55°C for additional 48h led to the most significant increase in methane yield.

Acknowledgement

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T2EDK-01293, BiogasUp).

Thank you for the attention!

CORFU 2022

9th International Conference on Sustainable Solid Waste Management Corfu, Greece, 15 - 18 JUNE 2022

Pre-treatment of sewage sludge to enhance methane production: optimal technology's evaluation through continuous reactor operation

G.C. Mitraka, K.N. Kontogiannopoulos, A.I. Zouboulis, P.G. Kougias

