Date waste management via pyrolysis: The effect of particle size on thermokinetics and thermodynamics

9th International Conference on Sustainable Solid Waste Management Corfu, Greece 16th June 2022

*Presenter & Ph.D. Scholar in Sustainable Energy

Presentation Outline

- Introduction
- Experimental Work
- Results & Discussion
- Conclusion
- References

Introduction

Thermochemical processes for waste management

- Biomass/wastes→ value added products via biochemical & thermochemical conversion
- Pyrolysis -> partial or complete absence of oxygen -> 300 -800°C → reduces waste emission & carbon footprint
- Pyrolysis preferred over biochemical conversions → feedstock flexibility, fuel production variety, & fast reaction times
- Pyrolysis products: Oil, char & gas depending on feedstock type, heating rate, temperature, solid residence times, & particle size

Relevance to Qatar

Qatar \rightarrow average of 1.37 kg/capita/ day of MSW \rightarrow 50% go to landfills, incineration and some recycling

Ministry of Environment and Climate Change → extend its portfolio to manage waste disposal

Qatar \rightarrow co-pyrolysis of waste feedstocks to produce value added products \rightarrow enhance technoeconomic feasibility

- So

Wastes from the Date Fruit

Date palms are among the few fruits bearing trees in arid countries.

- Rich in Fe, K, Ca, Mg
- Good source of fiber
- Rich in calories
- Good alternative to refined sugar

- 120 million date palm trees globally
- 10% of the date fruit comprises date stones (DS) often thrown away.

Research Objective

- What? To understand the effect of DS particle sizes on kinetics and thermodynamics using TGA*
- Why? Particle size → impact the various process
 kinetics and thermodynamic parameters → pyrolysis
 design
- How? Coats Redfern models → reaction mechanism during thermal degradation

*Thermogravimetric analysis

Methodology

Feedstock procurement and characterisation

Dates are commercially purchased, date stones extracted, washed and grinded.

Proximate analysis - ASTM D7582-12 –moisture, volatiles, fixed carbon, and ash

Ultimate analysis - CHNS elemental analyzer → ASTM D 3176 – 8 – wt.% of carbon, hydrogen, nitrogen, oxygen, sulfur, chlorine, and ash

Calorific value - Automated Isoperibol Fixed Bomb Parr 6300 bomb calorimeter in an atmosphere of O_2

Reaction model	$oldsymbol{g}(\mathbf{x})$					
First order (F1)	-ln(1-a)	Power Law (P2)	a ^{1/2}			
Second order (F2)	(1-a) ⁻¹ -1	Power Law (P3)	a ^{1/3}			
Third order (F3)	[(1-a) ⁻¹ -1)]/2	Power Law (P4)	0 ^{1/4}			
One dimensional (D1)	Q ²	Power Law (P2/3)	a ^{3/2}			
Two dimensional (D2)	(1-α) ln(1-α) + α					
Three dimensional (D3)	1-(1-α) ^{1/32}	• Linear regression formula \rightarrow	Activation energy (E)			
Ginstling-Brounshtein (D4)	[1-(2/3) α] -(1-α) ^{2/3}	from slope and pre-expone	ential factor (A) from			
Two-dimensional nucleation (A2)	-ln (1-a) ^{1/2}	intercept				
Three-dimensional nucleation(A3)	-ln (1-a) ^{1/3}	• $\propto = \frac{W_0 - W_t}{W_0 - W_f}$				
Four-dimensional nucleation (A4)	-In (1-a) ^{1/4}	 W₀ weight before decomposition (kg) W_t is the weight at time t (kg) 				
Prout-Tompkins (R1)	a	 W_f is the final weight after decomposition (kg) R=8.314 I/mol. B is the beating rate 				
Contracting Cylinder (R2)	1-(1-a ^{1/2})					
Contracting sphere (R3)	ln(1-(1-a ^{1/2})		12			

- -

Thermodynamic properties

The best fitting kinetic model A and E were used to calculate change in Gibbs free energy (ΔG),

enthalpy (Δ H), and in entropy (Δ S)

 $\Delta G = E + RT_m \ln(\frac{k_b T_m}{hA})$ $\Delta H = E - RT_m$ $\Delta S = \frac{\Delta H - \Delta G}{T_m}$

 $T_{m} = Peak \ decomposition \ temperature \ (K)$ $k_{b} = Boltzmann \ constant \ (1.38 \ x \ 10^{-23} \ J/K)$ $R = Gas \ constant \ (8.314 \ J/mol \ K),$ $h = Planck \ constant \ (6.63 \ x \ 10^{-34} \ Js)$ $A \ (from \ Kissinger's \ equation) = \frac{\beta Eexp(\frac{E}{RT_{m}})}{RT_{m}^{2}}$

Results

Proximate analysis (% w/w)*					
Moisture	2.63				
Volatiles	63.36				
Ash	12.69				
Fixed carbon**	(21.32)				
Ultimate analysis (% w/w)*					
Carbon	(45.95)				
Hydrogen	6.20				
Oxygen**	30.88				
Nitrogen	4.27				
Calorific value (MJ/kg)	(18.25)				

Characterizatio n

*air-dried basis

**by difference

Thermal degradation behavior

	Stage I		Stage II		Stage III		Residual Char (%)	Total Weight
	Temp range (K)	Weigh t loss (%)	Temp range (K)	Weight loss (%)	Temp range (K)	Weight loss (%)		LOSS (%)
S1	Room-504.5	13.72	504.5-715.9	57.90	715.91- 1173.15	6.04	22.33	77.66
S2	Room-497.05	10.51	497.05- 724.87	58.43	724.87- 1173.15	4.83	26.22	73.77
S 3	Room-476.4	10.76	476.4-727.48	59.55	727.48- 1173.15	5.87	23.81	76.18
S 4	Room-406.86 (<mark>3.994</mark>	406.86-871.6	68.30	871.6- 1173.15	1.59	26.11	73.89
S5	Room-427.28	7.934	427.28- 788.08	66.85	788.08- 1173.15	3.31	21.89	78.10
Degradation occurs over a wider temperature range, but with maximum weight loss when size is smaller and in Stage II!								

Results

Sample	CR model	E (kJ/mol`	A (s ¹)	ΔH kJ/mol	ΔG (kJ/mol)	ΔS (kJ/mol K)
S1	D4	18.78	1.16E+10	14.09	51.23	-0.0658
S2	D4	18.29	1.00E+10	14.00	51.61	-0.0671
S3	D4	15.43	4.65E+09	10.70	52.43	-0.0735
S4	R3	6.40	2.08E+08	1.67	58.13	-0.0993
S5	D4	10.18	9.29E+08	<mark>5.48</mark>	54.59	-0.0869

Comparison

	Particle	Ea	A (s ⁻¹)	ΔΗ	ΔG	ΔS
	size	(kJ/mol)		(kJ/mol)	(kJ/mol)	(kJ/mol K)
V						
Date stones	1 mm - 125	93.42-	1.73x10 ³ -	-0.90 –	51.23 -	-0.065-
	μm	4.80	1.16 x 10 ¹⁰	49.25	183.94	0.196
Date palm	N. R	166.91-	3.18 x 10 ⁻⁶ –	-4.05 –	53.29 -	-0.14 –
surface fibres		0.598	2.2 x 10 ¹¹	162.25	367.98	- 0.47
Date stones	N. R	671.26-	6.69 x 10 ⁻³ –	7.94 –	166.48 –	-0.092
		12.75	2.03 × 10 ³⁴	113.51	195.40	- 0.3 -
Date palm	<2mm	226.28 –	2.4916 x 10 ⁻⁵ -	N. S	N. S	N. S
leaflets		1.94	4.4 x 10 ¹¹			
N.S: not studied Our study found values in the range of published date-based studies.						

Conclusion

- Results show particle size of date stones affects the degradation, kinetic and thermodynamic properties during pyrolysis.
- The onset degradation temperature, activation energy, enthalpy change, and entropy decreases with lowering particle sizes.
- The mixed and lower particle-sized date stones are preferred due to the lower activation energies.

Current and future studies

- Kinetics and thermodynamics effect in lab scale tube furnace studies for products generation of different biomass
- ASPEN Plus process flow, technoeconomic studies
- Co-pyrolysis with plastics, and major chunks of MSW
- Pyrolysis studies of existing landfill wastes
- Pilot scale studies

References

Capareda, S. (2014). Introduction to biomass energy conversions. CRC Press, Taylor & Francis.

- Das P, Chandramohan VP, Mathimani T, Pugazhendhi A. A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy. Sci Total Environ 2021;766:144213. https://doi.org/10.1016/j.scitotenv.2020.144213.
- Elkhalifa, S., Al-Ansari, T., Mackey, H. R., & McKay, G. (2019). Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 144(September 2018), 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024
- Elmay Y, Jeguirim M, Trouvé G, Said R. Kinetic analysis of thermal decomposition of date palm residues using Coats-Redfern method. Energy Sources, Part A Recover Util Environ Eff 2016;38:1117–24. https://doi.org/10.1080/15567036.2013.821547.
- Gözke G, Açıkalın K. Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods. J Therm Anal Calorim 2021;146:893–910. https://doi.org/10.1007/s10973-020-10055-9.
- Nagy, G., Wopera, Á., Koós, T., & Szabó, R. (2018). The pyrolysis of canteen waste and oak mixtures in various ratios. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(18), 2124–2136. https://doi.org/10.1080/15567036.2018.1495774
- Parthasarathy P, Alherbawi M, Pradhan S, Al-Ansari T, Mackey HR, McKay G. Pyrolysis characteristics, kinetic, and thermodynamic analysis of camel dung, date stone, and their blend using thermogravimetric analysis. Biomass Convers Biorefinery 2022. https://doi.org/10.1007/s13399-021-02249-4.
- Raza M, Abu-Jdayil B, Al-Marzouqi AH, Inayat A. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renew Energy 2022;183:67-77. https://doi.org/10.1016/j.renene.2021.10.065.
- Shahbaz, M., AlNouss, A., Ghiat, I., Mckay, G., Mackey, H., Elkhalifa, S., & Al-Ansari, T. (2021). A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling, 173(January), 105734. https://doi.org/10.1016/j.resconrec.2021.105734
- Solarte-Toro, J. C., González-Aguirre, J. A., Poveda Giraldo, J. A., & Cardona Alzate, C. A. (2021). Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renewable and Sustainable Energy Reviews, 136(July 2020). https://doi.org/10.1016/j.rser.2020.110376

Somerville M, Deev A. The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood. Renew Energy 2020;151:419–25.

- Tahir AHF, Al-Obaidy AHMJ, Mohammed FH. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. IOP Conf Ser Mater Sci Eng 2020;737. https://doi.org/10.1088/1757-899X/737/1/012171.
- Xiao R, Yang W, Cong X, Dong K, Xu J, Wang D, et al. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy 2020;201:117537. https://doi.org/10.1016/j.energy.2020.117537.

Acknowledgment: The authors acknowledge the support given by Hamad Bin Khalifa University (HBKU) and Qatar Foundation (QF) for conducting this research.

thanks for listening!