

Cheese whey wastewater treatment by combined Electrocoagulation-Electrooxidation

S. Elia, M. Stylianou, A. Agapiou*

Department of Chemistry, University of Cyprus

*E-mail address: agapiou.agapios@ucy.ac.cy

Agapios Agapiou

Assistant Professor

Department of Chemistry

University of Cyprus Department of Chemistry

Goat cheese whey wastewater

> Whey as a waste is characterized by high COD.

It is a polluting by-product, which needs to be treated to protect the environment.

In Europe, their direct discharges to surface waters are not permitted under the relevant European Directives 91/2717/EEC and 97/771/EEC, respectively.

Electrochemical processes such as electrocoagulation (EC) and electrooxidation (EO) have been reported to be the most effective for COD removal.

Electrocoagulation (EC)

Mainly Fe and Al electrodes are used, which are immersed in wastewater.

Its effectiveness is due to the formation of insoluble metal hydroxides M(OH)₃ through redox reactions, which act as coagulants and are capable of destabilizing organic matter.

 $M \rightarrow M^{n+} + ne^{-}$

 $nH_2O + ne^- \rightarrow nOH^- + (n/2)H_{2(g)}$

Electrochemical wastewater treatment

The organic charge is destroyed due to the hydroxyl radicals (·OH) formed on the anode surface by the oxidation of water.

$M + H_2O \rightarrow M(\cdot OH) + H^+ + e^-$

The use of Boron-doped diamond (BDD) electrode, is able to completely and non-selectively mineralize organic pollutants (R) with high efficiency.

 $BDD(\cdot OH) + R \rightarrow BDD + nCO_2 + nH_2O + H^+ + e^-$

Experimental layout of the EC process

Experimental layout of the EO process

Optimization of EC and EO operating parameters

The main parameters that affect the efficiency of EC and EO treatment were studied:

- 1) Operating time (h)
- 2) Agitation rate (rpm)
- 3) pH
- 4) Current density (mA/cm²)

The purpose was to find the optimal operating conditions for the highest efficient removal of COD from cheese whey wastewater

%
$$Removal = \frac{C_{initial} - C_{final}}{C_{initial}} \times 100$$

Operating time (h)

Electrooxidation (EO)

<u>Current density (mA/cm²)</u>

Electrocoagulation (EC)

The current determines the release rate of $AI \rightarrow AI^{3+} + 3e^{-}$

 \uparrow mA/cm² \rightarrow \uparrow e⁻ \rightarrow AI(OH)₃

Electrooxidation (EO)

The current determines the formation of BDD + $H_2O \rightarrow BDD(\cdot OH) + H^+ + e^-$

\uparrow mA/cm² \rightarrow \uparrow (·OH)

Agitation rate (rpm)

Electrocoagulation (EC)

Parameter (n=3)	% Reducing weight of Al-Al-Al					
Agitation rate (rpm)	190 rpm	380 rpm	570 rpm			
	0.5 %	0.7 %	1.1 %			

Electrooxidation (EO)

Electrocoagulation (EC)

 \succ

<u>рН</u>

Electrooxidation (EO)

Yilmaz Nayır, T., & Kara, S. (2017) Container washing wastewater treatment by combined electrocoagulation-electrooxidation. Seperation Science and Technology, 53(10), 1592–1603. https://doi.org/10.1080/01496395.2017.1411365

Stergiopoloulos D. (2021) Application of electrochemical technologies for the removal of organic and inorganic pollutants from aqueous waste. Doctoral thesis. Aristotle University of Thessaloniki.

Combined of EC/EO processes

Optimal operating conditions:

EC

- ➢ 40 mA/cm²
- ➢ 190 rpm
- > without pH adjustment

EO

- > 60 mA/cm²
- ➢ 380 rpm
- > without pH adjustment

	EC followed by EO		100				F		FO								
Efficiency %	Removal	Removal	Increase	Removal	Increase	90				6				-			
Time (min)	60 min EC	90 min	EC/EO	120 mir	n EC/EO	70							/	82,4			-
COD	36.5	82.4		74.4		00 oval						6	0.2				74,4
TN	25.2	38.3		45.8	Ļ	E 50						/ "	112				
Cl	17.5		32.5		19.2	O 40					/	/					
NO ₃ -	31.0		20.8		31.4	% 30				_	-	36,5					
PO4 ⁻³	11.7	12.7		14.5		20			26,4		-						
TPCs	56.5		74.2		86.4	10	10,	8									
Opti. Dens.	9.3	16.9		33.4		0	10	20 2	. 10	50	60	70		00	100	110	120
							0 10	20 3	40	50 t	ime (mi	in)	80	90	100	110	120

Type of wastewater	Electrochemical system	Electrode anode/cathode	Current density (mA/cm²)	Time (min)	рН	COD removal (%) *	References
Cheese whey wastewater	EC	Fe/Fe	60	20	5	86.4	Tezcan Un et al. (2014)
Artificial dairy wastewater	EC	AI/AI	-	30	7.1	61.0	Tchamango et al. (2010)
Dairy wastewater	EC	6xAl	31.5	60	7.2	98.8	Bazrafshan et al. (2013)
Dairy wastewater	EC	8xFe	5	15	7	58	Valente et al. (2012)
Cheese whey wastewater	EC/EO	Al/Fe	25	120	5	82	Yılmaz Nayır & Kara et al. (2017)
	- 1 -	BDD/Fe	25	300		89	
Dairy wastewater	EC/EO	AI/AI	60	6	6.6	40	Chakchouk et al. (2017)
		Ti/Ti	140	75		(70)	

* The % removal efficiency of COD is calculated based on its initial concentration, so the comparative results also depend on the initial content of wastewater in

COD.

HiSorb TD-GC/MS sample analysis

The developed HiSorb TD-GC/MS method was used to analyze the VOCs of cheese whey wastewater before and after the optimal electrochemical processes (EC, EO and EC/EO).

Semi – quantified =
$$\frac{A_c}{A_{IS}} \times C_{IS} (mg \ L^{-1})$$

Compound category (%) =
$$\frac{\sum_{category} \frac{A_C}{A_{IS}}}{\sum_{total \ VOCs} \frac{A_C}{A_{IS}}} x \ 100$$

□ <u>VOCs of raw cheese whey wastewater (n=9)</u>

Categories of VOCs	Number of emitted VOCs	Structure	Σ mg L ⁻¹ (±CL)
Aldehydes	14	R ^A O	1.379 (±0.955)
Acids	9	о R — ОН	1.003 (±0.522)
Ketones	7	O R R R	0.067 (±0.036)
Hydrocarbons	9	R_R R=R R≣R	0.137 (±0.102)
Others	2	R∕OH R ^{∕S} ∖R	0.002 (±0.001)
Total VOCs	41		2.588 (±1.616)

	Optimized EC process				
Categories of VOCs	Σmg L ⁻¹ (±CL)	^b Efficiency (↓ ή 个)			
Aldehydes	0.293 (±0.144)	↓ 78.8 %			
Acids	0.183 (±0.115)	↓ 81.8 %			
Ketones	0.062 (±0.036)	↓ 7.5 %			
С-Н	0.074 (±0.057)	↓ 46.0 %			
Others	^a S/N				
Total VOCs	0.612 (±0.352)	↓ 76.4 %			

^a Low signal to noise ratio (S/N≤3)

^b % Efficiency (
$$\downarrow$$
) = $\frac{C_{RAW} - C_{EC-treated}}{C_{RAW}} \times 100$

□ <u>VOCs of EO-treated (2 h) cheese whey wastewater (n=3)</u>

	Optimized EO process					
Categories of VOCs	Σ mg L ⁻¹ (±CL)	Efficiency (↓ ή 个)				
Aldehydes	1.074 (±0.253)	↓ 22.1%				
Acids	1.155 (±0.281)	个 13.2 %				
Ketones	0.236 (±0.050)	个 71.6 %				
С-Н	0.010 (±0.003)	↓ 92.7 %				
Alcohols R-OH	0.062 (±0.019)					
Esters O R O R	0.042 (±0.007)					
Nitriles R— <u></u> N	0.212 (±0.012)					
Chlorinated R-Cl	0.659 (±0.150)					
Furans OR	0.021 (±0.005)					
Total VOCs	3.471 (±0.816)	个 25.4 %				

□ <u>VOCs of EC/EO treated cheese whey wastewater (n=3)</u>

Sum by category of compound

Conclusions

1) Implementation and optimization of EC and EO operating parameters

- 2) EC showed good efficiency in reducing all metered parameters, including VOCs
- 3) EO failed to reduce TPCs, PO_4^{-3} , NO_3^{-3} and Cl^{-3}

4) The HiSorb TD-GC / MS method identified and semi-quantified (Total VOCs):

In conclusion

EC appeared to be a favorable process for the reduction of VOCs emitted, while conjugated

EC/EO as more effective for the reduction of cheese whey wastewater COD

Thank you!