

Universidad Industrial de Santander

Incorporation of substrates and a bacterial inoculum as operational strategies to promote lignocellulose degradation in co-composting of green waste

E.R. Oviedo-Ocaña, J. Soto-Paz, and V. Sanchez-Torres

Universidad Industrial de Santander Colombia 2022

Green waste management

hemicellulose

lignin

2

https://commons.wikimedia.org/wiki/File:Cellulose_structure.png https://commons.wikimedia.org/wiki/File:Lignin.png

Case study: A university campus in Colombia

Green waste production: 732.5 kg/day¹

1. Addition of food waste²

green waste (GW)

processed food waste (PFW)

unprocessed food waste (UPFW)

Treatment A: 100% GW Treatment B: 60% GW + 40% UPFW Treatment C: 50% GW + 30% UPFW + 20% PFW

Results: Addition of PFW and UPFW reduced the processing time and improved the product quality. However, the phosphorus content was low (0.6%).

2. Two-stage composting and addition of phosphate rock (4%)³

Substrate mixture: 46% GW + 19% UPFW + 18% PFW 13% sawdust + 4% phosphate rock

Two-stage

One-stage

Thermophilic phase:27 daysTmax:62 °C

33 days 68 °C

Results: The thermophilic phase was longer for one-state composting. The product quality was similar for both treatments. Addition of phosphate rock improved the phosphorus content (4%).

3. Selection of a lignocellulolytic bacterial inoculum

Paneobacillus sp. F1A5 inoculation increased lignocellulose degradation 1.6-fold compared to the uninoculated control.

4. Optimization of inoculum and substrate mixture⁴

Results:

The best inoculum has: 4.85*10⁵ CFU g⁻¹ of F3X3 1.44*10⁶ CFU g⁻¹ of F1A5

The best substrate mixture: 50% GW + 32.5% UPFW + 2.5% PFW, 13% sawdust + 2% phosphate rock; with a C/N ratio of 27

This study: Purpose

One-stage composting 120 kg

Methods

Treatment A: 50% GW + 32.5% UPFW + 2.5% PFW + 13% sawdust + 2% phosphate rock + inoculum

Treatment B: 50% GW + 32.5% UPFW + 2.5% PFW + 13% sawdust + 2% phosphate rock

Treatment C: 100% GW

- Physicochemical characteristics of the initial substrate mixtures
- Processing parameters: Moisture, temperature, pH, % lignocellulose degradation
- Product quality: Electrical conductivity, TOC, TN, and germination index

Results: Physicochemical parameters of the substrates

Treatment	рН	Moisture (%)	EC (mS/cm)	
TA,TB	6.3	58.2	3.5	_
TC	6.9	27.3	3.0	
Treatment	TOC (% db)	TN (% db)	C/N ratio	Lignocellulose (% db)
 Treatment TA,TB	TOC (% db) 47.7	TN (% db) 1.7	C/N ratio 27.6	Lignocellulose (% db) 23.8

Results: TA has a C/N and substrate mixture according to the optimum values determined.

Results: Temperature

Results: Incorporation of additives to GW composting improved the thermophilic phase.

Results: pH

Results: Similar pH profiles were observed for all treatments

Results: Lignocellulose

Results: During the cooling phase, the %lignocellulose degradation was 29.1% for TA, 22.7% for TB, and 18.2% TC. Therefore, inoculation enhanced lignocellulose degradation.

Treatment	рН	EC (dS/m)	тос	TN	GI
ТА	8.4	1.5	25.4	1.7	95.8
ТВ	8.7	1.3	27.4	2.2	85.4
ТС	8.6	1.4	32.8	2.4	83.1
Required	7 to 9	<3	>15	>1	>80

Different colors indicate significant differences (p < 0.05)

Results: The product for the inoculated treatment with additives (TA) has the best characteristics for agricultural use.

- The treatment with the substrate mixture and inoculation during the cooling phase (TA) allowed a reduction in the processing time up to13 days.
- The final product of TA was the one with the best agricultural characteristics with pH 8.4; TOC 25.4%; TN1.5% and GI 95.8%.
- The quality of the product at a pilot scale of 120 kg was similar to the results obtained previously for 20 kg; except for the TN that was higher at the pilot scale (~1.5-fold).

References

- Implementation of strategies to optimize the co-composting of green waste and food waste in developing countries. A case study: Colombia. A. Hernández-Gómez, A. Calderón, C. Medina, V. Sanchez-Torres, E. R. Oviedo-Ocaña. Environmental Science and Pollution Research, 28:24321–24327, 2021.
- Environmental Science and Pollution Research 28 (19), 24321-24327Co-composting of green waste mixed with unprocessed and processed food waste: influence on the composting process and product quality. E. R. Oviedo-Ocaña, I. Dominguez, D. Komilis, A. Sánchez. Waste and Biomass Valorization, 10 (1): 63–74, 2019.
- A comparison of two-stage and traditional co-composting of green waste and food waste amended with phosphate rock and sawdust. E. R. Oviedo-Ocaña, A. Hernández-Gómez, M. Ríos, A. Portela, V. Sánchez-Torres, I. Domínguez, D.Komilis. Sustainability, 13:1109, 2021.
- Optimization of lignocellulolytic bacterial inoculum and substrate mix for lignocellulose degradation and product quality on co-composting of green waste with food waste. J. Soto-Paz, E. R. Oviedo-Ocañaa, M. A. Angarita-Rangel, L. V. Rodríguez-Flórez, L. J. Castellanos-Suarez, D. Nabarlatz, V. Sanchez-Torres. Bioresource Technology, 359:127452, 2022.

Funding: Universidad Industrial de Santander Project VIE 2696

Postdoctoral researcher:

Jonathan Soto Paz

• Professor:

Prof. Edgar Ricardo Oviedo

Thanks, welcome to the Universidad Industrial de Santander

