

Opole University of Technology

Department of Processing Technology

Aydin Adnan Menderes University

Department of Biosystems Engineering

Co-pyrolysis of animal manure and plastic waste via TG-FTIR analysis

Małgorzata Wzorek, Robert Junga, Ersel Yilmaz

Corfu 2022

Annual manure production (million tonnes) in Europe

In the European Union (EU-27) and UK, animal farming generated annually more than **1.4 billion tonnes** of manure during the period 2016–2019.

Amount excreted in manure (N content), Cattle + (Total) by continent (2000 – 2019) (FAOSTAT)

J. Koninger, E. Lugato et al. Manuere managament and soil biodiversity. Towards more sustinable food systems in the EU, Agricultural Systems, 194,2021, 103251

Thermo-chemical conversion

Motivation of study

Materials

Animal manure (BULL)

Plastic waste Polyethylene (PE)

The aim of the work is to study thermal decomposition of blends of animal manure and plastic waste in pyrolysis process using micro-thermal analysis techniques.

Thermogravimetry (TG-DTG) coupled with Fourier transform infrared spectroscopy (FTIR) were used to investigate the synergistic effects during the process on the thermochemical conversion of waste.

Materials

In order to identify samples individual symbols were attributed to them: $\begin{bmatrix} 1 \\ s \in P \end{bmatrix}$

Raw materials

- > animal waste (BULL 100)
- plastic waste (PE 100)

Blends

> animal waste 90% and plastic waste 10% (PE 10)

> animal waste 80% and plastic waste 20% (PE 20)

Methods

The energy parameters:

- moisture PN-EN ISO 18134
- ash PN-EN ISO 18122 and PN-ISO 117
- volatile matter PN-EN ISO 18123
- elementary analysis using Vario Macro Cube analyser 2.
- **higher heating value (HHV)** with the use of the IKA Calorimeters C 200 according to PN-EN 14918:2010 and PN-ISO 1928 standard

Methods

2. The simultaneous thermal analysis TG/DTG was carried out in NETZSCH STA 449 F3 Jupiter device coupled with FTIR spectrophotometer (Tensor 27, Bruker).

- 20 mg of air-dried material
- a dry nitrogen atmosphere with the gas flow of 30 mL/min (protective) and 50 mL/min (purge).
- temperature up to 1,000°C
- heating rate: 10 K/min
- the IR spectra were recorded in the spectral region of 600–4000 cm⁻¹ at a resolution of 4 cm⁻¹.
- The obtained spectra were evaluated in the spectrometer database (Opus 8.5, Brucker Optiv GmbH)) to assign individual spectra to gas components in accordance with Beer's law.

Results

The proximate and ultimate analysis

Samples	Proximate analysis wt%				Ultimate analysis wt%							
	Moisture	Ash	VM	Fixed	С	Н	Ν	S	0			HHV
		d.m.	d.m.	carbon d.m.			d.m			U/C	MJ/kg	
BULL 100	9.44	11,61	71.50	7.45	45.62	6.30	2.61	0.19	45.28	0.992	0.138	17.27
PE 100	0.18	4.40	94.51	0.91	85.88	14.29	0.00	0.85	2.98	0.046	0.174	43.64
PE 10	7.53	9.81	70.10	12.56	45,61	6.65	2.13	0.198	45.41	0.990	0.145	20.07
PE 20	6.58	10.74	71.64	11.04	49.97	7.57	1.92	0.178	40.36	0.808	0.151	22.45

TG/DTG curves:

Animal waste (BULL 100)

Plastic waste (PE 100)

TG/DTG curves:

PE 10

PE 20

Individual stages of pyrolysis

Sample	Stage I	Stage II	Stage III		
	°C	°C	°C		
BULL 100	55-124	124-390	390- 600		
PE	-	419-496	-		
PE10	55-120	120-408	408-600		
PE20	55-119	119-394	394-600		

Pyrolysis parameters and synergistic effect of co-pyrolysis

Comprehensive pyrolysis index

$$CPI = \frac{-(R_p \cdot R_m) \cdot m_{\infty}}{T_i \cdot T_p \cdot \Delta T_{1/2}}$$

where:

 T_i - initial devolatilization temperature

T_p- peak temperature

 m_{∞} - weigh loss: m_{∞} - m_{f}

 $\Delta T_{1/2}$ - temperature interval when R/R_p=1/2

 $-R_p$ - maximum pyrolysis rate

-R_m - average weight loss rate

 R_e - residual mass at the end of the reaction

Pyrolysis parameters

Symbol	Parameter	Unit	BULL100	PE100	PE10	PE20
Ti	initial devolatilization temperature	٥C	257.7	451.6	260.7	258.2
Тр	peak temperature	°C	309.9	473.2	308.6	300
-Rp	max pyrolysis rate	%/min	5.37	33.5	4.51	4.37
1/2Rp			2.68	16.75	2.25	2.185
-Rm	average weight loss rate	%/min	-1.08	-1.63	-1.16	-1.21
Re	residual mass at the end of the reaction	%	42.60	11.77	37.77	34.85
m _∞	Mass at the end of proces	%	0.43	0.12	0.38	0.35
DT1/2		°C	268.8	457.8	268.8	268.8
CPI 600	comprehensive pyrolysis index	10 ⁻⁶ %²/(min² C³)	0.155	0.493	0.160	0.166

Synergy effect of measurement and calculation

 $W_{cal} = X_1 W_1 + X_2 W_2$

where X_1 and X_2 are the mass fraction of BULL and PE in the blend W_1 and W_2 are the weight % from DTG of BULL and PE, respectively.

FTIR of raw materials

Animal waste (BULL)

FTIR of blends

Animal waste (BULL)

Compering of samples

Conclusions

- The addition of plastic waste to animal waste increased its energy parameters; 20% plastic waste in the mixture is more favourable.
- TG/DTG analysis provided a knowledge base for operating pilot scale and commercial pyrolysis units with animal manures and plastic waste as feedstocks.
- Thermal degradation of blends in pyrolysis process shows three main stages: moisture evaporation, volatilization of the light molecules, and char formation. It showed similar effects for mixtures with 10% and 20% addition of plastic waste.
- An analysis of the FTIR results led to the conclusion that carbon dioxide was the main decomposition product, with water (small quantities), carbonyl compounds, and carboxylic compounds found, among other residues.
- The co-pyrolysis of animal waste and plastic waste is an attractive process for the thermochemical conversion to green energy

Thank you for your attention

Contact:

m.wzorek@po.edu.pl