Thermomechanically modified ground tire rubber/zinc borate compositions as fillers for flexible polyurethane foams

Aleksander Hejna, Paulina Kosmela, Wiktoria Żukowska, Adam Olszewski, Łukasz Zedler, Krzysztof Formela, Katarzyna Skórczewska, Adam Piasecki, Roman Barczewski, Mateusz Barczewski

This Project is supported by the National Centre for Research and Development (NCBR, Poland) in the frame of LIDER X project LIDER/3/0013/L-10/18/NCBR/2019

AIM OF THE PROJECT

- Development of method for material recycling of ground tire rubber (GTR),
- Development of the continuous method for GTR modification enabling its efficient utilization in polymer composites,
- Manufacturing of foamed polyurethane(PU)/GTR composites with potential use of insulation or damping materials,
- Enhancement of thermal stability and reduction of flammability of foamed PU/GTR composites,

This Project is supported by the National Centre for Research and Development (NCBR, Poland) in the frame of LIDER X project LIDER/3/0013/L-10/18/NCBR/2019

BACKGROUND

POLYURETHANE FOAMS

- Global demand for polyurethanes ~20.4 milion tons, ~59% accounts for foams, ~31% for flexible foams,
- Applied in the furniture, automotive, construction, packaging industries, as well as damping and soundproofing materials,
- Crucial direction of development pronounced by producers increasing the functionality, reducing waste generation, or reducing materials' costs,
- It is essential to provide beneficial cellular structure, which determines the mechanical, thermomechanical and insulation performance,

GDAŃSK UNIVERSITY

OF TECHNOLOGY

FACULTY OF CHEMISTRY

POLITECHNIKA BYDGOSKA im. Jana i Jedrzeja Śniadeckich

> This Project is supported by the National Centre for Research and Development (NCBR, Poland) in the frame of LIDER X project LIDER/3/0013/L-10/18/NCBR/2019

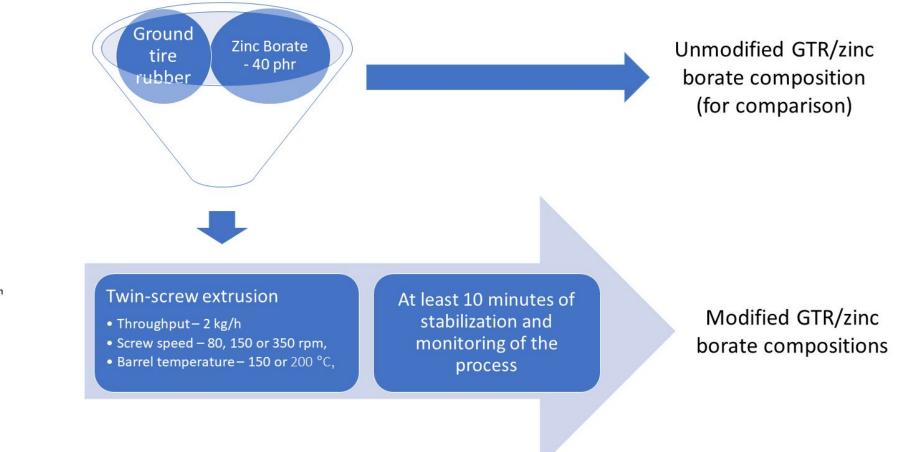
BACKGROUND

GROUND TIRE RUBBER

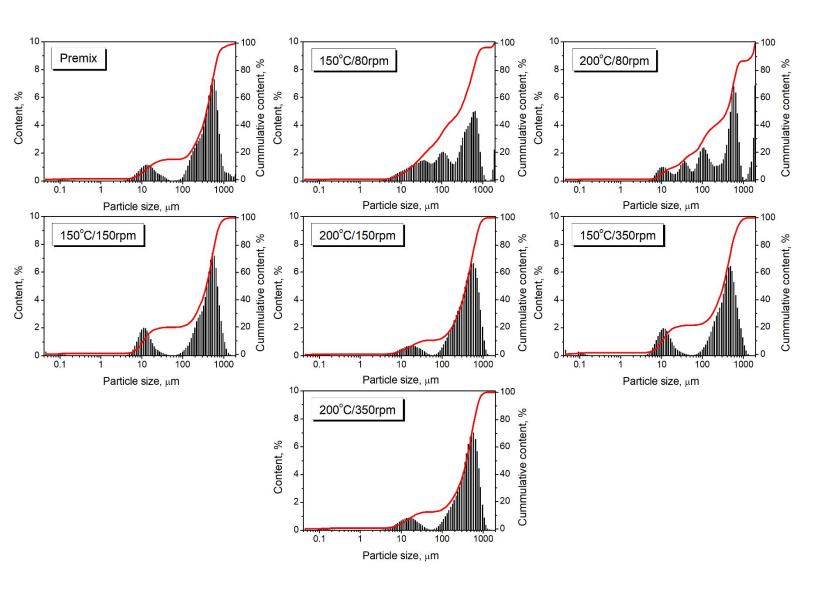
- In Europe, almost 3.3 million tons of car tires are being withdrawn from use annually,
- The European Union's primary method is material recycling (accounting for ~40% of car tire recycling),
- The most popular is the shredding of tires, resulting in ground tire rubber (GTR),
- Application of GTR enables lowering of materials' costs,
- Also, it may enhance various materials' parameters, e.g., tensile strength, toughness, or sound absorption properties,
- Interesting candidate for PU foamed materials lower thermal conductivity coefficient of GTR compared to solid PU (~160 and ~220 mW/(m·K),
- Although, it may require modifications to increase surface roughness and improve interfacial adhesion,

This Project is supported by the National Centre for Research and Development (NCBR, Poland) in the frame of LIDER X project LIDER/3/0013/L-10/18/NCBR/2019

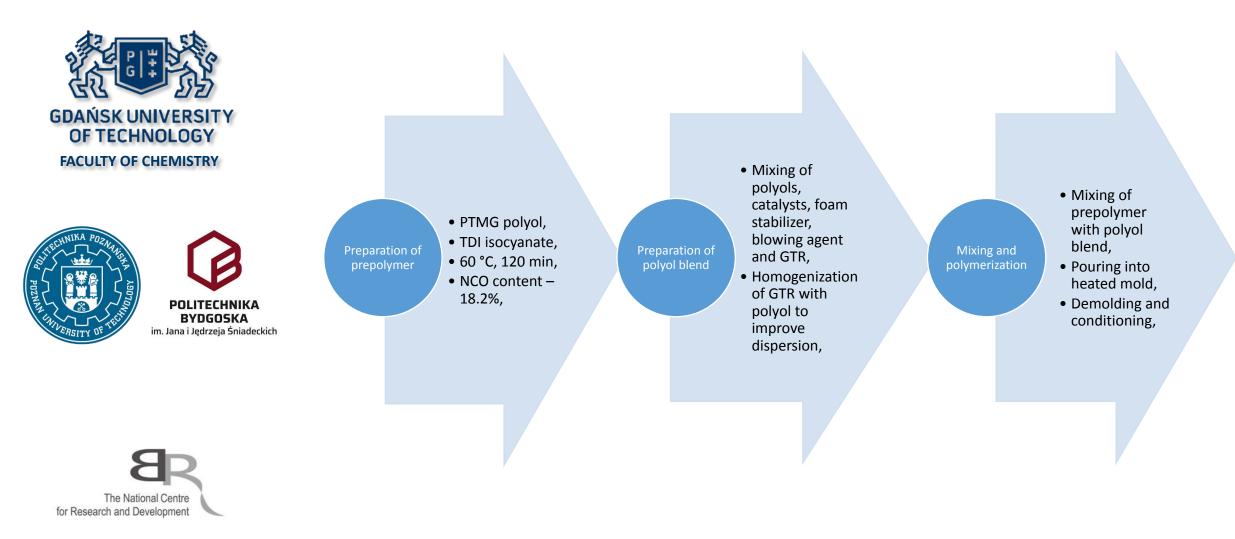
4



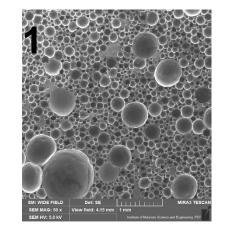
GTR MODIFICATION PROCEDURE

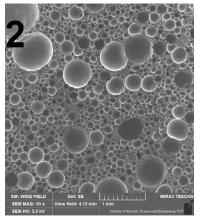


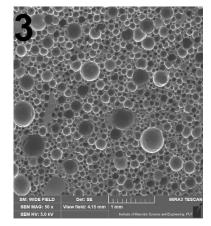
MODIFIED GTR PARTICLE SIZE

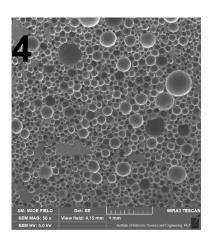


POLITECHNIKA BYDGOSKA im. Jana i Jędrzeja Śniadeckich




PREPARATION OF PU COMPOSITE FOAMS

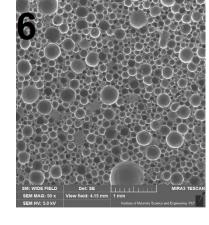

FOAMS' CELLULAR STRUCTURE



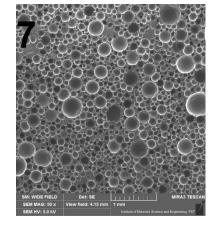
186 μm 150 °C/80 rpm

172 μm 200 °C/80 rpm

166 μm 150 °C/150 rpm



192 μm Premix


163 µm

200 °C/150 rpm

160 μm

150 °C/350 rpm

163 μm 200 °C/350 rpm

The National Centre for Research and Development

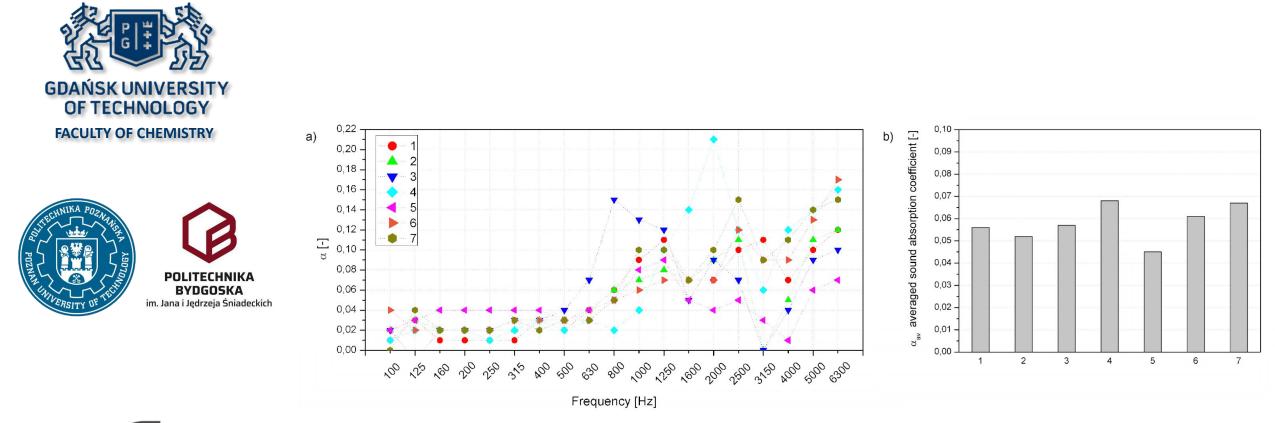
FOAMS' CELLULAR STRUCTURE

Parameter	Premix	150 °C/80 rpm	200 °C/80 rpm	150 °C/150 rpm	200 °C/150 rpm	150 °C/350 rpm	200 °C/350 rpm
Average cell size, μm	192±116	186 ± 106	172 ± 98	166±91	163 ± 86	160 ± 83	163 ± 90
Circularity	0.35 ± 0.21	0.36 ± 0.23	0.50 ± 0.27	0.51 ± 0.27	0.54 ± 0.27	0.54 ± 0.24	0.59 ± 0.27
Aspect ratio	1.34 ± 0.31	1.32 ± 0.24	1.32 ± 0.27	1.31 ± 0.22	1.29 ± 0.22	1.29 ± 0.19	1.29 ± 0.23
Roundness	0.78 ± 0.15	0.78 ± 0.12	0.78 ± 0.12	0.78 ± 0.12	0.80 ± 0.12	0.79 ± 0.11	0.79 ± 0.12
Open cell content, %	57.66	57.07	54.54	54.31	53.15	56.13	59.29
λ coefficient, mW/(m·K)	69.15	66.65	65.56	68.21	64.97	68.63	69.16

FOAMS' MECHANICAL PERFORMANCE

$\frac{\text{rpm}}{915 \pm 43}$
150 ± 3
79.6 ± 5.7
5.24
-48.6
25.3

FOAMS' THERMAL STABILITY



Sample	T-2%, °C	T-5%, °C	T-10%, °C	T-50%, °C	T _{max1} , °C	T _{max2} , °C	Residue, wt%
Premix	242.2	261.1	281.5	418.3	286.3	424.3	10.85
150 °C/80 rpm	246.5	261.8	280.1	416.5	268.6	423.3	11.61
200 °C/80 rpm	246.2	263.8	282.5	419.2	267.4	424.0	10.85
150 °C/150 rpm	247.6	263.1	282.3	419.2	264.2	423.0	11.85
200 °C/150 rpm	249.1	263.8	284.4	420.2	268.4	424.3	11.97
150 °C/350 rpm	248.1	264.7	285.2	420.8	269.1	424.3	11.64
200 °C/350 rpm	248.8	266.1	286.4	421.3	271.2	424.9	12.20

FOAMS' SOUND ABSORPTION PERFORMANCE

- Modification of GTR with zinc borate enable reduction of particle size and increase of roughness of GTR particles surface,
- It yielded higher homogeneity of foams' cellular structure and enhanced composites' performance,
- Enhancement of insulation performance was noted,
- Higher GTR roughness improved interfacial adhesion and increased composites' strength,
- Thermal decomposition onset was shifted towards higher temperatures,
- Sound absorptio coefficient was hardly affected, pointing to the need for more substantial modifications of cellular structure.

This Project is supported by the National Centre for Research and Development (NCBR, Poland) in the frame of LIDER X project LIDER/3/0013/L-10/18/NCBR/2019

THANK YOU VERY MUCH FOR YOUR ATTENTION

