BIORECOVERY OF SCANDIUM FROM BAUXITE RESIDUE

Inorganic and Analytical Chemistry Laboratory
Organic Chemical Technology Laboratory
Horizontal Laboratory of Quality Control of Processes and Products

School of Chemical Engineering
National Technical University of Athens, Athens, Greece
Introduction

- The bauxite residue (BR), is a highly alkaline waste by-product.
- 3.5 billion tons of BR have been stockpiled globally in storage areas.
- The disposal of BR is a universal environmental concern.
- BR contains valuable metals, such as rare earth elements (REEs), in particular, Scandium (Sc).
- Higher demand for critical raw materials (CRMs).
- The most senior supply risk of CRMs corresponds to REEs.

Filter-pressed (dry) bauxite residue being stockpiled in Greece, at Mytilneos S.A. (former Aluminum of Greece)

Scandium crystals
Bioleaching

- Biotechnologies Essential role in metal recovery
- Sustainable technology for waste
- Eco-friendly “Green technology”
- Operational flexibility
- Low energy requirements

Bioleaching of Red Mud
Materials and methods

Batch experiments

Microbial sources:

1. Digestate (anaerobic digestion effluent) collected from a pilot-scale anaerobic digester

2. Chemoheterotrophic Bacterium, *Acetobacter tropicalis* (Pure Culture)

3. Chemoheterotrophic Fungus, *Aspergillus niger* (Pure Culture)

- Bauxite Residue (BR) provided by Mytilineos S.A. (ferroalumina 12/2016) – Sc content: 100±5 mg/kg
- The initial pH of the BR was 11.3.
Materials and methods

1. Digestate

- AMPTS' bottles (500 ml total volume; 400 ml working volume and 100 ml headspace)
- Bench-scale anaerobic bioreactor
- Subculturing (8 months period)

Materials and methods

2. *Acetobacter tropicalis* (1/2)

Bacterial growth

- Inoculation into leaching medium and incubated at 30°C and 80 rpm in an shaking incubator for 1 month for activation.
Materials and methods

2. *Acetobacter tropicalis* (2/2)

Bioleaching experiments

- 10% and 20% v/v of bacterium suspension was inoculated into 150 mL of leaching medium in 250 mL Erlenmeyer flask

- 120 RPM

 - pH adjustment to 7 with HCl
 - BIOMASS 10% and 20% v/v
 - 1%, 2%, 10%, 20% and 30% w/v BR pulp density
 - Incubation time 0-30 days
 - T= 20 and 30 °C

Aerobic conical flasks
Materials and methods

3. *Aspergillus niger* (Pure culture)

Bioleaching experiments

- 2, 4 6 % v/v of fungus suspension was inoculated into 120 mL of leaching medium in 250 mL Erlenmeyer flask

- 100 RPM

- **NO pH adjustment to 7**

- Incubation time 20 days

- 1%, 5% and 10% w/v BR pulp density

- BIOMASS 2, 4, 6% v/v

- **T=30°C**

- 40, 90 and 140 g/L Sucrose

Aspergillus niger culture from Institute Leibniz, DSMZ, Germany

Incubation in an orbital shaking incubator
pH monitoring
Sc % Recovery

Digestate and subculturing

 Longer enrichment

Stimulation of Bioleaching!
Sc % Recovery

Acetobacter Tropicalis
Bioleaching Experiments

Aspergillus Niger

- **Bioleaching Conditions**: 30 °C, 120 rpm
- **Time**: 20 days
- **Optimization of scandium extraction using Taguchi methodology**

<table>
<thead>
<tr>
<th>Parameters Taguchi</th>
<th>Sucrose (g/L)</th>
<th>S/L BR (%)</th>
<th>A. Niger (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π1</td>
<td>40</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Π2</td>
<td>40</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Π3</td>
<td>40</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Π4</td>
<td>90</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Π5</td>
<td>90</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Π6</td>
<td>90</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Π7</td>
<td>140</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Π8</td>
<td>140</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Π9</td>
<td>140</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>
Sc % Recovery

Aspergillus Niger

Sucrose: 140 g/L
S/L: 1 %
As. Niger: 6 %
pH: 5.5
Effect of Taguchi Parameters

Main Effects Plot for Sc Concentration, Day 15
Data Means

Sucr (g/L)	S/L (%)	Asp Nig (%)

Mean

40 90 140 1 5 10 2 4 6
Estimated Sc Concentrations
Estimated Sc Recoveries
Effect of Subculturing

Aspergillus Niger

Sucrose: 90 g/L
S/L: 1%
As. Niger: 4%
Organic Acids Production

Digestate
Organic Acids Production

Digestate- Subculturing

[Bar chart showing concentrations of various organic acids (e.g., oxalic, citric, acetic, propionic, isobutyric, butyric, isoameric, and valeric) over different conditions and time periods.]

9TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT CORFU, GREECE, 15 - 18 JUNE 2022 20
Organic Acids Production

Acetobacter tropicalis
Organic acids standards
2 mg/L

90 g/L sucrose, 1 % S/L, 4 % As. niger
Day 4

Aspergillus Niger

90 g/L sucrose, 1 % S/L, 4 % As. niger
Day 18

Aspergillus Niger
Maximum Sc recoveries

- Aspergillus niger, 1% S/L, 6% fungus, pH 5.5, 30 oC, 20 days
- Acetobacter tropicalis, 1% S/L, 20% bacterium, pH 1.9, 30 oC, 20 days
- Inoculum digestate, 10% S/L, 35 oC, 10 days
- H2SO4, 5% S/L, pH 0.01, 25 oC, 60 min
- H3PO4, 2% S/L, pH 0.2, 25 oC, 60 min
Sc Recovery – S/L 10%

- Aspergillus niger, 10% S/L, 16 days
- Acetobacter tropicalis, 10% S/L, 20 days
- Inoculum digestate, 10% S/L, 10 days
- H2SO4, 10% S/L, 60 min
- H3PO4, 10% S/L, 60 min
Conclusions (1/2)

▪ After a longer acclimation the activated sludge inoculum (mixed culture) resulted in higher Sc recovery, equal to 33% (previous 20%) at 10% pulp density and shorter time.

▪ *Acetobacter tropicalis* resulted Sc recovery of 42% that was observed with 1% S/L- BR pulp density with 20% w/w of bacterium suspension, recorded after 20 days.

▪ *Aspergillus Niger* resulted in maximum Sc recovery: 46%

<table>
<thead>
<tr>
<th>S/L</th>
<th>Sucrose</th>
<th>As. niger</th>
<th>pH</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>140 g/L</td>
<td>6%</td>
<td>5.5</td>
<td>20</td>
</tr>
</tbody>
</table>
Conclusions (2/2)

▪ **Acetobacter Tropicalis** resulted in mainly acetic and oxalic acids with lower concentrations of citric acid, malic and succinic acid.

▪ **Aspergillus Niger** resulted also in mainly acetic and oxalic acids with lower concentrations of citric, malic, succinic, lactic, propionic and formic acid.

▪ Synergistic effect of the different organic acids produced by microorganisms.

▪ Factors affecting Sc recovery
 ▪ BR Solid to liquid ratios (S/L)
 ▪ Sucrose concentrations
 ▪ Subculturing
Future work

Optimization of the bioleaching process

- Different microorganisms – A fungus, *Penicillium oxalicum*
- Investigation of *biosorption*
- Incubation time minimization
- Maximize Sc recovery
References

THANK YOU FOR YOUR ATTENTION
Analytical Methods

- Chemical analysis of the leachate solutions after filtration for the identification of Sc was conducted by ICP-OES.

- The pH was measured using a digital pH-meter.

- The identification of organic acids was performed by HPLC and gas chromatograph.

- Volatile solids (VS) were carried out according to Standard Methods. VS determined as a measure of biomass production. By measuring VS, the organic portion of the total dry weight could be measured.

- The numbers of bacterial cell during bacterial growth was counted performed by standard plate count (SPC) method.

- Optical Density: Absorbance of the samples during time with a spectrophotometer at 600 nm.