Organic kitchen food waste valorization applying the biorefinery concept in the Colombian context

Mariana Ortiz-Sanchez¹, Juan Camilo Solarte-Toro¹, Carlos Ariel Cardona Alzate¹

¹Institute of Biotechnology and Agribusiness, Department of Chemical Engineering, Universidad Nacional de Colombia, Manizales, Caldas, Zip Code: 170003, Colombia.

Presenting author email: jcsolartet@unal.edu.co
Content

1. Introduction
2. Research objective
3. Methodology
4. Results
5. Conclusions
6. Acknowledgments
7. References
1. Introduction

Municipal Solid Waste (MSW)

The quantity and composition of MSW depend on the socio-economic and cultural context analyzed.

Overall average generation of waste per person is very high [1]. The MSW generation is increasing worldwide [2].

Some predictions calculate an increase to **3.4 billion tons by 2050** [3].

Industrial and Agri-industrial Solid Waste (AgR)

The generation of AgR can cover an average of **30-50% by weight of the raw material** used.

Citrus supply chain

Orange crop

- **FOOD LOSSES**
 - Sheets
 - Stems
 - Flowers

- **60% national production**

Sale for immediate consumption

- **FOOD LOSS**
 - Orange peel
 - 40-50% of the fruit

Agro-industrial processing

- **40% national production**
1. Introduction

Figure 1. General steps of Supply Chain

```
1. Introduction

Agricultural or Farming Production
Post-harvest, Handling, Slaughter and Storage
Process distribution and Transportation
Products for immediate consumption
Processing and Packaging
Distribution
Manufacturing and Packaging
Consumption

FOOD WASTE: organic kitchen food waste

Biological resources. Negative impacts on sustainable development: for example the use of crops for food products

Research group in Chemical, Catalytic and Biotechnological Processes
```
1. Introduction

Global impacts of residues generation

Economic impact

The economic impact is defined as the combined costs incurred to produce, deliver, and dispose of residues.

Impact estimates vary significantly by method, waste type, region, scale, and stage.

Social impact

The social impact is directly and indirectly, related to social welfare, human health, and employment.

Environmental impact

The FAO estimates that the generation of residues represents 8% of global GHG emissions [4]. This is primarily due to the residues elimination pathways. Various environmental impacts on soil and water are also presented.

The FAO estimated a total economic cost of USD 1055 billion, an environmental cost of USD 696 billion and a social cost of USD 882 billion [4].
This work was focused on determining the prefeasibility in technical and economic terms of the most promising alternatives for using food waste generated in Colombia.

Factors to consider:
- Productive chain
- Scale of raw material
- Technological context
- Type of products to obtain

Sustainability of the food supply chain

Factors to consider:
- Economic impact
- Environmental impact
- Social impact

Research group in Chemical, Catalytic and Biotechnological Processes
3. Methodology

Organic Kitchen Food Waste in Colombia

National studies of food waste generated in Colombia were based on the seven food groups proposed by the FAO

<table>
<thead>
<tr>
<th>Input</th>
<th>The share lost in food supply chain</th>
<th>Flow generated in Colombia (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Meat</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cereals</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Roots and tubers</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Fruits and vegetables</td>
<td>44</td>
<td>62</td>
</tr>
<tr>
<td>Dairy</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Oilseeds and legumes</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

The most representative food of each group was selected according to national consumption statistics.

Scenario 1
Biogas and Fertilizer production by Anaerobic Digestion

Scenario 2
Ethanol production by Fermentation (Saccharomyces cerevisiae)

Scenario 3
Ethanol production and Biogas and Fertilizer production by Fermentation and Anaerobic Digestion
3. Methodology

Organic Kitchen Food Waste brutto composition Model for Colombia

<table>
<thead>
<tr>
<th>Input</th>
<th>The most representative product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish and eggs</td>
<td>(80%) Eggs peel</td>
</tr>
<tr>
<td>Meat</td>
<td>(45%) Chicken bone</td>
</tr>
<tr>
<td>Cereals</td>
<td>(5%) Meat waste</td>
</tr>
<tr>
<td>Roots and tubers</td>
<td>(30%) Cassava peel</td>
</tr>
<tr>
<td>Fruits and vegetables</td>
<td>(10%) Carrot peel</td>
</tr>
<tr>
<td>Dairy</td>
<td>(16%) Onion peel</td>
</tr>
<tr>
<td>Oilseeds and legumes</td>
<td>(10%) Bean residues</td>
</tr>
<tr>
<td></td>
<td>(3%) Cabbage residues</td>
</tr>
<tr>
<td></td>
<td>(5%) Mango peel and seed</td>
</tr>
<tr>
<td></td>
<td>(1%) Pumpkin peel</td>
</tr>
<tr>
<td></td>
<td>(5%) Guava Pulp</td>
</tr>
<tr>
<td></td>
<td>(1%) Strawberry Pulp</td>
</tr>
<tr>
<td></td>
<td>(5%) Guava Pulp</td>
</tr>
<tr>
<td></td>
<td>(1%) Celery residues</td>
</tr>
<tr>
<td></td>
<td>(2%) Lulo peel and Pulp</td>
</tr>
<tr>
<td></td>
<td>(2%) Apple residues</td>
</tr>
<tr>
<td></td>
<td>(1%) Beetroot peel</td>
</tr>
<tr>
<td></td>
<td>(1%) Celery residues</td>
</tr>
<tr>
<td></td>
<td>(1%) Celery residues</td>
</tr>
<tr>
<td></td>
<td>(1%) Celery residues</td>
</tr>
</tbody>
</table>

Table 2. Composition model of Organic Kitchen Food Waste
3. Methodology

Experimental work

- Chemical characterization

<table>
<thead>
<tr>
<th>Compound</th>
<th>Method</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractives</td>
<td>NREL/TP-510-42619</td>
<td>[7]</td>
</tr>
<tr>
<td>Holocellulose</td>
<td>Han, J.S., Rowell, J.S.: Chemical Composition of Fibers</td>
<td>[8]</td>
</tr>
<tr>
<td>Cellulose</td>
<td>TAPPI T203</td>
<td>[9]</td>
</tr>
<tr>
<td>Hemicellulose</td>
<td>Subtraction between the holocellulose and cellulose</td>
<td></td>
</tr>
<tr>
<td>Acid insoluble</td>
<td>TAPPI T222</td>
<td>[10]</td>
</tr>
<tr>
<td>lignin</td>
<td>Yu et al. (1996)</td>
<td>[11]</td>
</tr>
<tr>
<td>Total pectin</td>
<td>Rivas et al. (2008)</td>
<td>[12]</td>
</tr>
<tr>
<td>Fat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>ASTM E871-82</td>
<td>[13]</td>
</tr>
<tr>
<td>Moisture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. The methods used for chemical characterization of raw material

- Fermentable sugar production

Enzymatic hydrolysis with cellulases, glucoamylases and pectinases enzymes

Reducing sugar concentration was analyzed with DNS (3,5-Dinitrosalicylic acid) method
3. Methodology

Simulated and evaluated processes

Organic Kitchen Food Waste Valorization

Conceptual Design

- Technical and Energy
 - Yield
 - Power requirement
 - Thermal energy consumption

- Economic
 - CapEx
 - OpEx
 - Production cost/Selling Price ratio

Tools

- Aspen plus and Aspen Energy Analyzer
- Aspen Process Economic Analyzer

Research group in Chemical, Catalytic and Biotechnological Processes
4. Results

Chemical characterization of Organic Kitchen Food Waste

Table 4. The methods used for chemical characterization of raw material

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>81.9</td>
<td>75.9</td>
<td>80.3</td>
<td>N.R.</td>
<td>75.2</td>
<td>78.4</td>
</tr>
<tr>
<td>Total sugar</td>
<td>48.3</td>
<td>42.3</td>
<td>59.8</td>
<td>56.2</td>
<td>50.2</td>
<td>36.5</td>
</tr>
<tr>
<td>Starch</td>
<td>42.3</td>
<td>7.06</td>
<td>N.R.</td>
<td>N.R.</td>
<td>46.1</td>
<td>16.1</td>
</tr>
<tr>
<td>Cellulose</td>
<td>N.R.</td>
<td>N.R.</td>
<td>N.R.</td>
<td>46.3</td>
<td>N.R.</td>
<td>23.8</td>
</tr>
<tr>
<td>Hemicellulose</td>
<td>N.R.</td>
<td>10.26</td>
<td>N.R.</td>
<td>36.5</td>
<td>N.R.</td>
<td>12.6</td>
</tr>
<tr>
<td>Lignin</td>
<td>N.R.</td>
<td>N.R.</td>
<td>0.8</td>
<td>N.R.</td>
<td>N.R.</td>
<td>2.4</td>
</tr>
<tr>
<td>Fats</td>
<td>N.R.</td>
<td>3.10</td>
<td>15.7</td>
<td>15.6</td>
<td>18.1</td>
<td>3.9</td>
</tr>
<tr>
<td>Protein</td>
<td>17.8</td>
<td>3.9</td>
<td>21.8</td>
<td>N.R.</td>
<td>15.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Pectin</td>
<td>N.R.</td>
<td>N.R.</td>
<td>N.R.</td>
<td>4.3</td>
<td>N.R.</td>
<td>1.1</td>
</tr>
<tr>
<td>Ash</td>
<td>N.R.</td>
<td>1.25</td>
<td>1.9</td>
<td>1.9</td>
<td>2.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

The production of fermentable sugars from the enzymatic hydrolysis of OKW was between 80 - 115 g/L. These results are similar to those reported in previous studies.
4. Results

Technical and energy analysis

Table 5. Mass and energy indicators

<table>
<thead>
<tr>
<th>Input</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product yield</td>
<td>Biogas: 1.105 m³/kg of raw material</td>
<td>Ethanol: 0.024 kg/kg of raw material</td>
<td>Ethanol: 0.024 kg/kg of raw material</td>
</tr>
<tr>
<td></td>
<td>Methane: 0.638 m³/kg of raw material</td>
<td>Concentration fermentable sugars: 100 g/L</td>
<td>Concentration fermentable sugars: 100 g/L</td>
</tr>
<tr>
<td>Power requirement</td>
<td>1.372 kWh/ton of raw material</td>
<td>3.561 kWh/ton of raw material</td>
<td>4.713 kWh/ton of raw material</td>
</tr>
<tr>
<td>Thermal energy consumption</td>
<td>Medium Pressure Steam: 0.645 MJ/kg of raw material</td>
<td>Medium Pressure Steam: 1.852 MJ/kg of raw material</td>
<td>Medium Pressure Steam: 2.842 MJ/kg of raw material</td>
</tr>
<tr>
<td></td>
<td>High Pressure Steam: 38.013 MJ/kg of raw material</td>
<td>High Pressure Steam: 38.013 MJ/kg of raw material</td>
<td>High Pressure Steam: 38.013 MJ/kg of raw material</td>
</tr>
<tr>
<td></td>
<td>Cooling water: 13.014 MJ/kg of raw material</td>
<td>Cooling water: 13.014 MJ/kg of raw material</td>
<td>Cooling water: 13.014 MJ/kg of raw material</td>
</tr>
</tbody>
</table>
4. Results

Economic analysis

Figure 2. OKFW valorization in Scenario 1 (Biogas)

Figure 3. OKFW valorization in Scenario 2 (Bioethanol).

Figure 4. OKFW valorization in Scenario 3 (Bioethanol + Biogas).

Processing scale: 36.5 t/d
5. Conclusions

- The Organic Kitchen Food Waste is a potential raw material to be upgraded applying the biorefinery concept since this raw material has the potential to provide a series of different platforms (e.g., sugars).

- The integration of ethanol production with biogas and fertilizer makes possible the valorization of Organic Kitchen Food Waste in economic terms.

- In addition, the compositional model can be applied in any other context considering the socioeconomic conditions.
6. Acknowledgments

"Business and innovation competencies for economic development and productive inclusion of the regions affected by the Colombian conflict“
SIGP code 58907. Contract number: FP44842-213-2018

The call PROGRAMA NACIONAL PARA LAS MUJERES EN LA CIENCIA UNESCOL’ORÉAL-MINCIENCIAS-ICETEX 2021, Colombia

Research group in Chemical, Catalytic and Biotechnological Processes
7. References

Organic kitchen food waste valorization applying the biorefinery concept in the Colombian context

Juan Camilo Solarte-Toro

Presenting author email: jcsolartet@unal.edu.co

Thank you for your attention