

Integral valorization of grapevine shoots from the variety Grüner Veltliner: A technoeconomic assessment

Sebastián Serna-Loaiza,

Laura Daza-Serna, Walter Wukovits,

Anton Friedl

Technische Universität Wien

Bioactive Doctoral College

Institute of Chemical, Environmental and Bioscience Engineering

Agenda

- Introduction
- What we did?
- Results
- Conclusion

Context

A transition into sustainable societies is urgent!

Key for shifting into a bioeconomy:

Focus on both products and energy/fuels used in industry and daily-life applications

shutterstock.com • 85310074

Context

- Grape production
 - ~78 Mtonnes, 6.9 MHa (2020) (FAOSTAT)

Data taken from: FAOSTAT (Consulted June 2022)

Context

- Wine production
 - ~27 Mtonnes (2019) (FAOSTAT)

Data taken from: FAOSTAT (Consulted June 2022)

Context

> Residues

Taken from: (Contreras et al., 2022)

Food and Bioproducts Processing

Volume 134, July 2022, Pages 56-79

Residues from grapevine and wine production as feedstock for a biorefinery

María del Mar Contreras ^{a, b}, Juan Miguel Romero-García ^{a, b}, Juan Carlos López-Linares ^{a, b}, Inmaculada Romero ^{a, b}, Eulogio Castro ^{a, b} ≳ ⊠

o ~1-3 t/ha

- o 1 t grape
 - 30-40 kg stalks
 - 130-200 kg pomace
 - 15-60 kg lees

Context

> Residues

- o Grapevine Shoots (GVS): Lignocellulosic residue
 - Results from the pruning of the grapevine
 - Multiple studies focusing on:
 - Bioactive substances
 - Biofuels
 - Biochemicals

Context

> Residues

Single grapevine shoot branch

Problem Statement

- Most of studies (in Europe) regarding GVS valorization have been done for Portuguese, Italian, French, and Spanish grape varieties
- > Austria:
 - Grape production (2017): 330k tons
 - Variety: Grüner Veltliner 48% wine area (15k ha)
- ➤ No differentiation between leaves and stem
- Evaluating possible integration scenarios and determining the techno-economic feasibility of a biorefinery to valorize the Grüner Veltliner's GVS is still necessary to be performed

Previous Study: Grapevine Shoots - Leaves and Stem

Serna-Loaiza, S.; Kornpointner, C.; Pazzaglia, A.; Jordan, C.; Halbwirth, H.; Friedl, A. Biorefinery concept for the valorization of grapevine shoots: Study case for the Austrian variety Grüner Veltliner. *Food and Bioproducts Processing* **2022**, In Press.

Previous Study: Grapevine Shoots - Leaves and Stem

Serna-Loaiza, S.; Kornpointner, C.; Pazzaglia, A.; Jordan, C.; Halbwirth, H.; Friedl, A. Biorefinery concept for the valorization of grapevine shoots: Study case for the Austrian variety Grüner Veltliner. *Food and Bioproducts Processing* **2022**, In Press.

Previous Study: Grapevine Shoots - Leaves and Stem

Serna-Loaiza, S.; Kornpointner, C.; Pazzaglia, A.; Jordan, C.; Halbwirth, H.; Friedl, A. Biorefinery concept for the valorization of grapevine shoots: Study case for the Austrian variety Grüner Veltliner. *Food and Bioproducts Processing* **2022**, In Press.

This Study: Scenarios and Techno-Economic Assessment

Leaves

Sc. 1

Sc. 2

This Study: Scenarios and Techno-Economic Assessment

Stems

Sc. 3

Sc. 4

This Study: Scenarios and Techno-Economic Assessment

Leaves + Stems

This Study: Scenarios and Techno-Economic Assessment

> Feedstock flows

Vineyard residue production	Planted vineyards (Austria)	Estimated residue production	
ton/ha	ha/year	ton/year	kg/h
5	48000	240000	27379

Assumed use	Mass flow	
of residue	WET	
(%)	(kg/h)	
10%	2737.85	

	Plant fraction WET	Mass flow WET	DM content	Mass flow DRY
	(%wt)	(kg/h)	(%wt)	(kg/h)
Leaves	60.5	1657.74	37.68	624.64
Stem	39.5	1080.11	47.48	512.84
			Total	1137.47

Aspen Process V10 AP Economic Analyzer

Technical Assessment: Product streams

Technical Assessment: Reagent consumption

Technical Assessment: Energy consumption

Economic assessment: Total cost and costs distribution

Economic assessment: Total cost and costs distribution

Upcoming work

- Sequential processing (biorefinery) improved the extraction of compounds of interest (bioactive compounds, hemicellulosic sugars, and lignin)
- ✓ Mass integration did not increase the specific consumption of reagents and energy.
- ✓ Total specific costs decreased, while increasing the output of products.
- Scenario evaluation:
 - Market costs for intermediate products (?)
 - Prospective LCA

Agenda

Contact Links:

Sebastian Serna-Loaiza

sebastian.serna@tuwien.ac.at

https://www.linkedin.com/in/sebastian-serna-loaiza-b9735596/

Bioactive Project

https://bioactive.tuwien.ac.at/home/

Thank you for your attention!

Questions

