

Evaluation of cold plasma treatment for enhanced the enzymatic hydrolysis of lignocellulosic waste stream

D. Ladakis, <u>Katiana Filippi</u>, C. Pateraki, O. Psaki, A. Koutinas

Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece

Presenting author email: <u>katiana.philippi@gmail.com</u>

Objectives

Characterisation of raw material
Pretreatment with non-thermal plasma
Enzymatic hydrolysis
Production of biobased succinic acid

Global grape production

Lignocellulosic biomass

One of the most common way to break down the complex structure of lignocellulosic biomass is chemical pretreatment *Acid pretreatment*

- high sugar yield
- ✓ increase the formation of inhibitors resulting in a toxic reaction mixture unsuitable for microbial growth

Alkali pretreatment

- high lignin removal
- reduces the residual solid concentration

Advantages of plasma treatment against chemical treatment:

- Environmentally friendly and sustainable alternative to
 - conventional thermochemical processes
- Ambient temperatures and pressures
- ⁶ Dry gases instead of chemicals and solvents
- Waximize the efficiency of enzymatic hydrolysis

Disrupt linkages within lignocellulosic matrix 6/28/2022

Bio-based Succinic Acid

Methodology

Non- Thermal Plasma Enzymatic hydrolysis Succinic acid production Grape Stalks Treatment Enzymatic hydrolysis Succinic acid production Batch Fermentation Pretreated solids were subjected to enzymatic hydrolysis using commercial enzyme cocktail composed of: Strain: Actinobacillus succinogenes t de terres de la construcción d cellulase, hemicellulase and β -glucosidase Working volume: 500 mL The enzymatic hydrolysates were carried out: Carbon source: Enzymatic hydrolysate produced from grape At 50°C stalks pretreated with non-thermal plasma For 48 h Witrogen source: 5 g/L yeast extract t de la companya de l ^opH: 5 Temperature: 37°C Deionised water (ddH_2O) ²100 g/L solid concentration 🖗 pH: 6.7 Liquid obtained after W Aeration: 0.1 vvm CO₂ plasma treatment

Grape stalks composition

Determination of Structural Carbohydrates and Lignin in Biomass proposed by the National Renewable Energy Laboratory (NREL)

Composition (%, dry basis)	This Work	Literature	
Lignin	30.2	17.4 - 40.6	
Cellulose	22.4	20.8 - 36.3	
Hemicellulose	12.4	11.5 – 24.5	
Xylan	4.8	4.2 - 8.5	
Galactan	2.6	1.3 – 2.8	
Arabinan	2.4	2.0 - 3.1	
Mannan	2.6	1.5 – 3.6	
Protein	9.2	6.1 – 11.8	
Lipids	9.7	4.7 – 10.3	
Free sugars	4.8	1.3 - 5.4	
Ash	5.2	3.9 - 7.7	

Plasma treatment

Influence of aeration applied in nonthermal plasma treatment, in the enzymatic hydrolysis of the pretreated solids in different pretreatment durations

Conditions	
Particle size	0.25 mm
Applied Voltage	200 V
Frequency	60 Hz
Duty Cycle	250 µs
Frequency discharge	500, 1000 Hz
Frequency discharge Aeration supply	500, 1000 Hz 2.5 vvm
Frequency discharge Aeration supply Solids concentration in plasma treatment	500, 1000 Hz 2.5 vvm 50 g/L

6/28/2022

Conditions	
Particle size	0.25 mm
Applied Voltage	200 V
Frequency	60 Hz
Duty Cycle	250 μs
Frequency discharge	1000 Hz
Aeration supply	2.5 vvm
Solids concentration in plasma treatment	50, 100, 150 g/L
Solids concentration in enzymatic hydrolysis	100 g/L

100

0

100

80

60

40

20

0

50 g/L

100 g/L

150 g/L

% Overall Conversion Yield

50 g/L

	Glucan		Hem	cellul	ose
Diff	ferent initi	al soli	id's co	ncentra	ation

100 g/L 150 g/L Different initial solids concentrations

The increase of the initial solid concentrations in non-thermal plasma treatment, significantly reduces the yield of hemicellulose, but a little effect presented in the case of glucan

Plasma treatment

Conditions	
Particle size	0.25 mm
Applied Voltage	200 V
Frequency	60 Hz
Duty Cycle	250 µs
Frequency discharge	1000 Hz
Aeration supply	2.5 vvm
Solids concentration in plasma treatment & enzymatic hydrolysis	100, 150 g/L
Hydrolysis Liquid	ddH ₂ O, plasma liquid

6/28/2022

Hydrolysis Time (h)

Succinic Acid Production

	Fermentation Time (h)	Succinic acid (SA) (g/L)	By-products: SA ratio (g/g)	Yield gSA/gtotal sugars	Productivity (g/L/h)
Commercial sugars	53	37.7	0.21	0.66	0.71
Hydrolysate after plasma	50	34.9	0.21	0.64	0.70
Hydrolysate after alkali treatment	51	28.8	0.65	0.42	0.57

Conclusions

The higher atmospheric air supply (2.5 vvm) has a positive effect in the enzymatic hydrolysis

- The increase of frequency discharge to 1000 Hz results in higher hydrolysis efficiency yield for both glucan (90%) and hemicellulose fraction (up to 40%)
- The increase of the solid concentration in plasma treatment gave similar results in the case of glucan hydrolysis yield but seems to affect the hemicellulose hydrolysis
- The hydrolysis conducted directly after plasma treatment (using both solid and liquid fraction) resulted in higher yields comparing with that obtained with deionised water
- The effectiveness of non-thermal plasma treatment was further confirmed with the efficient production of bio-based succinic acid

Thank you for your attention!

D. Ladakis, <u>Katiana Filippi</u>, C. Pateraki, O. Psaki, A. Koutinas

Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece

Presenting author email: <u>katiana.philippi@gmail.com</u>

