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1. Introduction

Figure 1. Residues classification generated in the stages of the supply chain
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Food residues 
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Relation between biomass conversion, responsible 
consumption and production with other SDGs

1. Introduction
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2. Research objective
This work focuses on proposing a new strategy for defining the best technological 

configurations using concepts of composition of the feedstocks (including the 
multifeedstocks), platforms and products for Food Residues Biorefineries 
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Bioprocess
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technological
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Different configurations or scenarios of Food Residues Valorization to be implemented in 
the supply chain
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3. Methodology
Biorefinery design strategy for biomass valorization

Step 1 Step 3 Step 5

Step 2 Step 4

Define the sustainable 
objective according to the 

factors that impact the 
valorization of biomass

Choose the range of 
BioProcesses considering 

the objective of the 
analysis

Sustainability evaluate the 
scenarios or 

superstructure defined

Define the scenarios or 
superstructure considering 

the process conceptual 
design 

Select the BioProcesses
according to  the type of 
Biomass fractions using 

TRL

LIMITING FACTORS

 The technological context of the analyzed region; 
 The type of products to be obtained based on the 

context; 
 The economic viability of the products based on the 

generation scale; 
 What type of benefit (economic, environmental, and/or 

social) is targeted to be achieved in the productive 
chain.

BioProducts
PORTFOLIO

Economic
dimension

Environmental 
dimension

Social 
dimension
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3. Methodology
Bioprocesses portfolio

Figure 2. Bioprocesses addressed to upgrade each fraction of biomass
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3. Methodology
Bioprocesses portfolio

Figure 3. Bioprocess and TRL relation (a) cellulose; (b); hemicellulose and lignin (c); extractives and fats (d); pectin and starch (e) all fractions raw material



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Cellulose fraction

BioProcess Platform BioProcess

Mass indicators Energy indicators Economic indicators
Environmental 

indicator
Yield (ton of 

product/Ton raw 
material fraction

Carbon 
conversion 

efficiency (%)

Power requirement 
(kWh/Ton raw material 

fraction)

Thermal energy 
consumption (MJth/kg raw 

material fraction)
CapEx* 
(MUSD)

OpEx* 
(MUSD)

Production 
cost/Selling 
price ratio

Climate change (kg 
CO2 eq/Product)

Catalytic glucose production from 
CELLULOSE

Glucose platform -
Catalytic BioP-Pt1 0.41 37.05 0.72 2.40 (H:80.5%, C: 19.5%)

a: 0.23
b: 0.09

a: 0.17
b: 0.39 30,5 0.48

Enzymatic hydrolysis from CELLULOSE
Glucose platform -
Enzymes BioP-Pt2 0.80 92.60 1.80 0.73 (L:100%)

a: 1.42
b: 0.53

a: 0.46
b: 1.05 0,21 0.28

Fermentation - Saccharomyces 
cerevisiae, Distillation Ethanol BioP-C1 0.30 46.20 4.00

61.90 (M: 1%, L: 76%, C: 
23%)

a: 1.82 
b: 0.67

a: 0.46 
b: 1.05 1.00 1,38

Fermentation - Clostridium 
acetobutylicum, Distillation ABE BioP-C2 0.25 40.51 1.50 0.07 (M: 98.2, C:1.8)

a: 0.26
b: 0.59

a: 0.15
b: 0.34 2.41 2,41

Fermentation - Lactobacillus casei, 
Distillation Lactic acid BioP-C3 0.66 65.75 3.10

44.30 (M: 1.3%, L: 9%, C: 
89.7%)

a: 1.44
b: 0.53

a: 18.36
b: 41.55 3,11 3.16

Catalytic upgrading - Distillation Levunilic acid BioP-C4 0.56 72.75 8.8
31.00 (H: 63%, M: 24%, C: 
13%)

a: 1.53
b: 0.57

a: 0.35
b: 0.80 0,20 2.89

Fermentation - Bacillus megaterium PHB BioP-C5 0.23 32.11 8.86 24.87 (L: 95%, C: 5%)
a: 3.69
b: 1.36

a: 0.99
b: 2.23 0,79 1.45

Fermentation - Aspergillus Terreus Itaconic acid BioP-C6 0.52 60.30 11.83 75.38 (L: 96%, C: 4%)
a: 2.19
b: 0.81

a: 4.73
b: 10.71 1,96 1.12

Catalytic upgrading - Distillation Polylactic acid BioP-C7 1.95 N.A. 17.17 0.1 (L:100%)
a: 0.16
b: 0.36

a: 0.25
b: 0.57 35.5 1.96

Table 1. Mass, energy, economic and environmental indicators

Figure 4. Mass, energy, economic and envornmental indicators of cellulose bioprocesses
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Value chain
Identifying the stages and actors 
corresponding to the first three 
stages of the value chainThe needs of the stages and 

actors
Contextualizes the possible FR 

valorization routes with the needs 
of the value chain

The characterization of 
the FR generated

(i)Generation place; (ii) Total generation
volume: generation cycle, quantity,
status: (iii) Chemical composition; (iv)
Current useThe possible forms of 

integration
Food loss integration;

Food waste integration: 
Food loss and Food Waste integration.

Strategy of biomass valorization
Portfolio of bioprocess

Strategy based on portfolio of BioProcesses according to Food residues valorization:

Food residues conversion
routes easier to implement

11

MULTIFEEDSTOCKS are just 2 o more
feedstocks to be considered in terms of
compositions to be summed strategically
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3. Methodology
Example: Orange Peel Wastes (Food Loss)

Juice and 
Pulp

The current market in Colombia

Orange crop
Industrial 
processing

Orange peel 
waste

Polyphenolic 
compounds Pectin Cellulose and 

hemicellulose

FatsProtein

Chemical 
composition

 OPW generated in a small-scale industry with a flow 
of 140 kg/h was considered. 

 The value chain identification includes the stages of 
producers (crop) and processors (agribusiness). 

 Agricultural residues such as leaves, branches, and 
flowers are generated in the producer stage (2 and 
2.8 tons per hectare per year).

 These residues are disposed of in the field. 

Orange peel 
waste

Leaves,branches 
flowers

The bioprocesses were filtered from the Technological 
Readiness Level (TRL implemented) and the lowest values of 

operating costs (OpEx) and capital cost (CapEx).

Figure 2. Characterization of zones production

12

FLP 
PROCESADOS 
S.A.S
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Application of the strategy:

Define the sustainable objective according 
to the factors that impact the valorization of 

biomass

Step 1 Select the BioProcesses according to  the 
type of Biomass fractions using TRL

Step 2

Choose the range of BioProcesses
considering the objective of the analysis

Step 3

The objective of valorization was to increment 
the economic impact of the use of FL

Extractives: Bioactive compounds by agitated 
solvent extraction and supercritical fluid 

extraction.
Cellulose: Glucose by catalytic process and 

enzymatic hydrolysis, Ethanol, ABE; Lactic acid, 
Levunilic acid; Polylactic acid

Hemicellulose: Xylose production by acid
hydrolysis, Furfural, Xylitol and Pentane

Pectin: Pectin extraction
Starch: Glucose production by enzymatic

hydrolysis.
All residual fraction: Biogas production

Extractives: Bioactive compounds by agitated 
solvent extraction 

All residual fraction: Biogas production
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Scenario 1

Scenario 2

Scenario 3

valorizing the leaves, stems, and flowers in the 
producer stage to obtain biogas

The OPW valorization for the production of bioactive 
compounds and biogas

The integration of the residues from the producer 
stage and the transformation stage to obtain 
polyphenolic compounds (from OPW) and biogas 
(from the mixture of exhausted OPW and leaves, 
stems, and flowers).

Define the scenarios or superstructure 
considering the process conceptual design 

Step 4
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Figure 5. Net present value over the project lifetime for each 
scenario.

The first analysis involved the evaluation and 
comparison of the three scenarios in terms of the 

economic metrics considering a fixed flow rate. 

Figure 6. Costs distribution of the proposed biorefineries at a 
processing scale of raw material of 140 kg/h.

Sustainability evaluate the scenarios or 
superstructure defined

Step 5

Expected at Higher scales Sc.3
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The second analysis was done to understand the influence 
of the scale in each scenario in terms of the economic 

metrics

4. Results

Figure 7. Economic performance of the OPW biorefineries at different scales over the project lifetime for each scenario. a) Scenario 1, b) Scenario 2, c) Scenario 3. 

a) Scenario 1 b) Scenario 2 c) Scenario 3

Sustainability evaluate the scenarios or 
superstructure defined

Step 5

The application of the Food Residues valorization strategy determined the best scenario considering the stated objective. In 
this sense, scenario 2 has a Minimum Processing Scale for Economic Feasibility (MYSELF) with a lower raw material flow 

than scenarios 1 and 3 (it is necessary to increase the processing scale from 3.36 tons/day to 11.5 tons/day)



5. Conclusion
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• Food Residues integration as an alternative for the generation of added-value
products can improve the value chain sustainability since emissions of polluting
agents are reduced.

• Indeed, the analyzed case study allowed to elucidate how the generation of added-
value products such as polyphenolic compounds increases the viability of the orange
value chain through the implementation of biorefinery with good economic
performance.

• Finally, an analysis related to the possible scale and technologies to be introduced
are a fundamental input to propose valorization alternatives. Finally, the proposed
methodology can be applied to any food waste since the value chains are already
previously defined and the disposal problems are current problems that require a
contextualized solution.
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