

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Life Cycle Analysis of Food Waste Valorization in Laboratory-Scale

Tahereh Soleymani Angili, Katarzyna Grzesik, Erfaneh Salimi, Maria Loizidou

Outlook of the presentation

- Introduction
- Goal and scope of research
- Methodology
- Results
- Conclusions

Introduction

Share of European renewable ethanol from each feedstock type

(Source: ePURE,2020)

Advanced Biofuel Sources in RED II

- Algae if cultivated on land in ponds or photobioreactors
- · Biomass fraction of mixed municipal waste
- Biowaste from private households subject to separate collection
- Biomass fraction of industrial waste not fit for use in the food or feed chain
- Straw
- Animal manure and sewage sludge
- Palm oil mill effluent and empty palm fruit bunches
- Crude glycerin
- Bagasse
- Grape marcs and wine lees
- Nut shells
- Husks
- Cobs cleaned of kernels of corn
- Biomass fraction of wastes and residues from forestry and forest-based industries
- Other non-food cellulosic material
- Other ligno-cellulosic material except saw logs and veneer logs
- Used cooking oil
- Some categories of animal fats

How much biorefineries are sustainable •

(Source: ePure)

LCA studies are performed for:

- ✓ Measuring the sustainability of biofuels includes environmental, economic and social considerations (directly/indirectly)
- ✓ Managing feedstock recourses, energy & martials, financial sources

✓ Assisting to design optimized processes & technologies

Goal and scope of research

The aim of the study was to investigate the early-stage LCA for food waste conversion to bioethanol, biomethane and oil, split over different scenarios.

Methodology

Goal & scope:

System boundary: Gate-Gate

Functional unit: 1 kg of restaurant food waste

Software: SimaPro 8.5.2

Avoided product approach was considered

Inventory analysis

- Foreground data: laboratory experiments

- Background data: Literature & Ecoinvent database

Impact assessment

- Assessment method: IMPACT 2002+
- 9 mid point categories selected

- Human health
- Ecosystem quality
- Climate change
- Resources

CLCA approach (direct emissions and all indirect effects)

ALCA approach (direct emissions from life cycle

Impact category	Unit	Abbr.
Ozone layer depletion	kg CFC-11 into air-eq	OD
Respiratory (organics)	kg ethylene into air-eq	RO
Ionizing radiation	Bq Carbon-14 into air-eq	IR
Land occupation	m ² organic arable land-eq.y	LO
Global warming	kg CO2 into air-eq	GW
Non-renewable energy	MJ crude oil-eq	NRE
Mineral extraction	in MJ Iron-eq	ME
Terrestrial ecotoxicity	kg Triethylene glycol into soil-eq	TE
Aquatic ecotoxicity	kg Triethylene glycol into water-eq	AE

Interpretation

- Characterization
- Normalization, using European normalization references
- Single score LCA results
- Sensitivity analysis

Results

Characterization results

- Electricity supply and VFA-rich effluent have paramount contribution to all categories.
- Utilization of yeast (sacharomyces cerevisiae), enzyme and n-hexane have the most undesirable effect on NRE, TE and AE, respectively.

Avoided burdens in dehydration, fat extraction and distillation processes

Avoided burdens in scenario A

Avoided burdens in scenario B

Normalization and Single score

Normalized potential impacts of scenario A and B, IMPACT 2002+

Single score LCA result for scenario A and B

Sensitivity analysis

Solvent type in fat extraction process

--- n-Hexane — Methanol

Enzyme loading in hydrolysis process

Conclusions

- Electricity production, VFAs, enzyme, yeast and n-hexane are contributing mainly to environmental burdens in all impact categories.
- Since the number of direct burdens was greater than the avoided burdens, the impacts were not fully avoided but reduced.
- Resource depletion is a result of extracting raw material and fossil fuels for energy, organic solvent, yeast and enzyme production.

- The high environmental damage in the climate change category is attributed to the emission of CO2 from electricity and nutrient/chemical production.
- The optimum amount for enzyme loading and n-hexane application are the best options to improve environmental performance along with process efficiency.
- An early stage LCA can inspire changes to design and improve the processes in the bioethanol industry.

Thank you!

Welcome to comments; angili@agh.edu.pl